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Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder primarily affecting young children. ASD
is a complex disease involving genetic and environmental factors. Environmental risk factors identified
include gestational exposure to pollution, pesticides, maternal infections, and inflammation. Genetic
mutations account for about 10 - 20% of ASD cases. Based on the Centre for Disease Control (CDC) in the
United States, 1 in 68 children are affected with ASD. Recent advancements in genetic technologies have
enabled the detection of biomarkers for the early detection of diseases and risk identification. Aim: This
meta-analysis aims to determine the gene signatures involved in ASD. We conducted a meta-analysis to
identify the differentially expressed genes (DEGs) in ASD microarray datasets comprising 122 ASD and 89
control peripheral blood mononuclear cell (PBMC) and whole blood samples from two microarray studies.
We performed gene ontology, pathway enrichment, and protein-protein interaction (PPI) network analysis
to identify associations between autism and altered gene expression levels. At a false discovery rate (FDR)
< 0.05, we identified 1862 DEGs; 1056 genes were upregulated, and 806 genes were downregulated. DEGs
revealed that dysregulated genes were significantly enriched in the “Primary immunodeficiency pathway”,
“Influenzae A”, “Epstein-Barr virus infection pathway”, and other signalling pathways from the analyses
using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment.
Subsequently, protein-protein interactions (PPI) analysis identified SUMO1, SP1, EGR1, EP300, and VHL as
hub genes to be the potential biomarkers for ASD. In total, eighteen differentially expressed hub genes
could potentially be used as potential biomarkers for the diagnosis of ASD.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder related to communication and behaviour
deficits. ASD is diagnosed using the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), and the
clinical characteristics include lack of communication and interaction, repetitive behaviours, and limited
interests [. It is a broad-spectrum disease, and each ASD child presents with different behavioural
characteristics. Based on the Centre for Disease Control in the United State, the prevalence of ASD is estimated
about 1 in 68 children [21. Based on this figure, there are about 9,000 children born with ASD yearly in Malaysia
[23]. For Malaysia, based on ASD screening, the most recent data from 2015 infer that 1 in 635 children have
ASD 4.

The cause of ASD is still unknown. However, environmental, biological, and genetic factors play essential roles
in the development of ASD [5. Environmental risk factors include advanced parental age, prematurity,
encephalopathy, low birth weight and birth complication trauma [¢l. Genetic factors contribute to about 49%
of all ASD cases I7l. The advancements in next-generation sequencing technology via whole-genome sequencing
(WGS) and whole-exome sequencing (WES) have facilitated the identification of ASD-risk genes. To date, 600
ASD-risk genes have been identified, including ADNP, ANK2, ARID1B, CHD8, GRINZB and PTEN [81.The synaptic
formation, transcriptional modelling and chromatin remodelling pathways are the common pathways
associated with ASD [9I. Integrated analysis of the brain transcriptome revealed that abnormal synaptic
functions and neurological development contribute to the development of ASD. In addition, immune system
dysfunction is also associated with ASD [19]. Inflammatory activity is increased in ASD children via pro-
inflammatory biomarkers [11]. In a landmark paper on ASD and inflammation, 97 ASD children recruited from
the Childhood Autism Risks from Genetics and Environment (CHARGE) study showed increased pro-
inflammatory cytokines such as IL-1f3, IL-6, IL-8 and IL-12p40 ['2I- High cytokine levels linked to stereotypical
behaviours suggested that immune system dysfunction affects ASD core behaviours 121,

Maternal infections and fever during pregnancy increase the risk for ASD [13l. However, the association
between influenza and ASD is still indefinite. A study by Zerbo and colleagues showed no association between
maternal influenza infection during pregnancy and ASD risk. The risk of ASD in their children would be higher
if the mother received an influenza vaccination during their first trimester. However, after multiple
corrections, the association was not statistically significant [14]. Self-reported maternal influenza infection is
associated with an increased risk of infantile autism adjusted HR: 2.3 [95% CI: 1.0-5.3]), even higher during
prolonged fever [15]. Several viral infections have been associated with ASD, including Epstein-Barr, influenza,
and the Borna disease virus [16. However, the role of viral infection in ASD is still poorly understood. Valayi
and colleagues investigated the levels of anti-Cytomegalovirus (CMV) and anti-Epstein-Barr virus (EBV)
antibodies in 45 ASD children and healthy controls [17]. Anti-CMV IgG and IgM antibodies in the blood of ASD
patients but not statistically significant (P< 0.05). In ASD patients, anti-EBV IgM antibodies were increased
significantly (P< 0.05), but the serum IgG level against EBV was not significant. Thus, it has been postulated
that EBV infection may be associated with an increased risk of ASD.

In this study, we performed an integrative bioinformatics meta-analysis of microarray data from the GEO
DataSets (https://www.ncbi.nlm.nih.gov/gds) to identify the hub genes involved in ASD.

Materials and Methods

Workflow of analysis strategy

We performed an integrative bioinformatics analysis of microarray data to identify the hub genes in ASD as
potential diagnostic biomarkers from the GEO DataSets (Fig. 1). Two microarray data sets were used, including
GSE111176 (18] and GSE18123 [19] and the data were analysed accordingly. In total, 211 samples were included
in this meta-analysis, including 122 confirmed ASD patients and 89 healthy controls.
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Figure 1: Workflow of analysis strategy for analysis of microarray data from the GEO DataSets to determine
the differentially expressed genes and the pathways involved in ASD.

Data acquisition and data clean-up

Two microarray studies depicted in Table 1 were used to determine the differentially expressed genes from
the blood of ASD patients. ASD microarray datasets were searched based on a study by Voinsky and
colleagues?0. Only studies using peripheral blood mononuclear cells (PBMC) and whole blood were
included. Subsequently, the list of database searches of publications related to selected datasets was
consulted to confirm the clinical diagnosis. A definitive diagnosis was ascertained before blood collection
for microarray expression analysis. All searches were performed on public data repositories from the GEO
DataSets?!. The GEO accession number, sample type, platform, and matrix expression data were
downloaded for each study. Each sample was assigned an identification condition and class (ASD and
control) in Microsoft Excel format and then saved as a tab-delimited “.txt” file. Subsequent analysis was
conducted using the web-application NetworkAnalyst version 3.022.
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Table 1: Characteristics of individual studies included in the ASD meta-analysis.

No GEO Accession Samples Organism Sample Platform References
No. (ASD/control) source

1. GSE111176 n=172,91/56 Human PBMC IIlumina Gazestani et al.,,
HumanHT-12 V4.0 2019 (23)
expression
beadchip

2. GSE18123 n=99, 31/33 Human Whole Affymetrix Human Kongetal, 2012

blood Genome U133 Plus (24)

2.0 Array

Data processing, filtering, and summarization

"Multiple Gene Expression Tables" were selected and the ".txt" file from the previous step was uploaded
separately for each study. A series of quality control, including ID conversion, metadata check, and
visualization, was performed. Subsequently, each dataset was independently normalized using variant
stabilization normalization (VSN) followed by quantile normalization before differential expression analysis.
The meta-datasets were visually inspected using principal component analysis (PCA) plots to identify the
outliers. The individual analysis of each dataset was carried out using the Benjamini-Hochberg's False
Discovery Rate (FDR) with cut-off p-values less than 0.05. Each dataset has different probe identifiers (IDs)
representing different transcripts and genes on the array chip due to different platforms used by different
studies, Illumina and Affymetrix. The Entrez ID will replace the identifier based on the platform used in each
study. Finally, the meta-datasets batch effects were adjusted using ComBat [23], and the batch covariate is
known. A heatmap of differential expressed genes (DEGs) was generated using the network visual inspection
tools of NetworkAnalyst and clustered using the single linkage method.

Differential expression and statistical analysis

Following the normalization process, pre-processing and data integrity checks of the individual datasets were
conducted. The limma package from the R package in the NetworkAnalyst was used to determine the
differentially expressed genes via meta-analysis approaches [24l. The estimated significant difference of
expression and differential expression meta-analysis of ASD and control samples was performed. For each
study, only one contrast was used: PBMC versus control and whole blood versus control. P-value from different
datasets was combined to increase the statistical power, and cross-validation with Fisher’s method was
applied to determine the estimated gene expression fold changes (FC) and statistical significance across two
different studies. This method produced the most consistent biological results. DEGs with adjusted p-value less
than 0.05 and fold change of more than 1.5 were obtained from the meta-analysis. The high confidence DEGs
were used for downstream analysis, i.e., gene ontology, pathway enrichment analysis, and hub gene network
analysis.

Gene ontology and pathway enrichment analysis

Gene ontology and pathway enrichment analysis were analysed using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [25] based pathway enrichment identification module in the NetworkAnalyst 3.0 using the
differentially dysregulated genes in ASD versus control.

Protein-protein interaction (PPI) network analysis for hub gene identification

The hub genes were identified using PPI network analysis based on the gene’s interaction in the biological
network. Following identifying DEGs, the hub gene network was generated using the PPI network option in
Network Analyst 3.0 using the InnateDB interactive database [26. A zero-order PPI network was created using
the original seed of 894 dysregulated genes. A network of 894 nodes represented the proteins, while 2325
edges represented interaction between the proteins.
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Results

Identification of differentially expressed genes from ASD related microarray dataset

Principal component analysis (PCA) of before and after normalization of these two datasets was shown
in Figure 2a. Our analysis identified 1,862 DEGs, including 1,056 up-regulated and 806 down-regulated
genes with a significance threshold of p-value less than 0.05. The most significantly dysregulated genes
(n=29) are shown in Supplementary Table 1. However, only four genes overlap between PBMC and the
whole blood expression dataset, including AP551, RBBP6, ANKRD28, and ZNF638 (Figure 2a).Figure
2b shows the heatmap of all the DEGs across two microarray datasets. NANOS2 (combined Tstat = 36.777,
combined p-value = 0.00041468), IGFZBP3 (combined Tstat = 36.47, combined p-value = 0.00041468)
and MRRF (combined Tstat = 34.274, combined p-value = 0.00088271) were the most significantly up-
regulated genes. While NR3C2 (combined Tstat = -42.933, combined p-value=8.49E-
05), ANKRD28 (combined Tstat = -42.288, combined p-value= 8.49E-05) and ZNF609 (combined Tstat =
-43.759, combined p-value=8.49E-05) were the most down-regulated genes across the two microarray
datasets.

2a)

520

S

283

2b)

Figure 2: a) Venn diagram of DEGs. The combined meta-analysis of both datasets shows many dysregulated
genes that were significantly different (a p-value of < 0.05 were considered significant). b) Heatmap of most
significantly differentially expressed genes. Heatmap showing the expression of the 50 most significantly
differentially expressed genes (DEGs) (p-value < 0.05) from 1,862 significant DEGs identified through the
meta-analysis. In total, 205 genes were up-regulated, and 136 genes were down-regulated in ASD
compared to control.
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Gene ontology and pathway enrichment analysis of DEGs in ASD

Based on the Kyoto Encyclopedia of Genes (KEGG) pathways, the up-regulated DEGs in the meta-analysis
of ASD datasets were enriched in “Primary immunodeficiency pathway”, “Influenzae A”, and “Epstein-Barr
virus infection pathway” with p < 0.05. While the downregulated DEGs were enriched in the “Sphingolipid
signalling pathway”, “Phospholipase D signalling pathway”, and “Spliceosome”.

Protein-protein interaction (PPI) network analysis and hub genes identification

A protein-protein interaction network analysis was conducted to identify the important hub genes to
extract more biologically relevant information. A degree above 30 was set as the cut off criterion, and we
identified 18 hub genes (Table 2) and the top five genes were SUMO1, SP1, EGR1, EP300, and VHL. In the
NetworkAnalyst, the “Zero-order” network interaction generated 894 nodes and 2,325 edges where the
node represents protein while edges are the interaction between proteins (Figure 4). Small Ubiquitin-like
Modifier 1 (SUMO1) with betweenness centrality = 81255.76; degree = 124; expression=20.821, Sp1
Transcription Factor (SP1) with betweenness centrality = 41381.92; degree = 76; expression = -14.729,
E1A Binding Protein P300 (EP300) with betweenness centrality = 37982.03; degree = 71; expression = -
21.558, Early Growth Response 1 (EGR1) with betweenness centrality = 40490.8; degree = 67, and Von
Hippel-Lindau Tumor Suppressor (VHL) with betweenness centrality = 30043.04; degree = 55; expression=
-16.519. A full list of hub genes based on network topology scores was shown in Supplementary Table 1.

Table 2: The list of 18 hub genes related to ASD.

No Id Label Degree Betweenness Expression
1 P63165 SUMO1 124 81255.76 20.821
2 P08047 SP1 76 41381.92 -14.729
3 Q09472 EP300 71 37982.03 -21.558
4 P18146 EGR1 67 40490.8 16.638
5 P40337 VHL 55 30043.04 -16.519
6 Q92793 CREBBP 47 17243.04 -17.537
7 P35222 CTNNB1 44 233731 19.881
8 P62158 CALM3 43 22681.42 -22.686
9 P31749 AKT1 38 22188.12 -14.821
10 015379 HDAC3 37 12010.95 -18.694
11 P05161 ISG15 35 17012.03 14.907
12 P34932 HSPA4 34 13777.56 32.667
13 P22681 CBL 33 15814.78 -16.919
14 Q12906 ILF3 32 12401.2 -14.901
15 P16104 H2AFX 32 10565.3 14.969
16 P27986 PIK3R1 31 13934.52 -19.518
17 060216 RAD21 30 9983.29 -17.269
18 P24928 POLR2A 30 8772.93 -18.578
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Figure 4: Network analysis of the highly dysregulated genes. The differentially expressed genes (DEGs)
(ASD versus controls) were integrated into the Network Analyst web application to visualize the protein-
protein interactions network. A ‘zero-order’ interaction network with 894 nodes and 2325 edges was
created. The most highly ranked nodes across the dataset based on network topology measures were
SUMO1 (betweenness centrality = 81255.76; degree = 124), and SP1 (betweenness centrality = 41381.92;
degree = 76).

Discussion

Based on the gene expression profiles of the GSE60438 dataset, a total of 1862 dysregulated genes were
identified, including 1056 up- and 806 down-regulated DEGs. GO, and KEGG pathway enrichment analyses of
DEGs suggested that they were significantly enriched in disease-related ASD. PPI network generation and
identification of hub genes were performed to determine 18 significant hub genes with a degree value > 30.
Our results showed that these 18 differentially expressed hub genes could be used as potential biomarkers for
the diagnosis of ASD. From the results, we could classify the genes into two categories. First, associated genes
and functions are directly related to ASD pathways, for example, RBBP6, SUMO1 and EP300. Second, genes that
will indirectly impact the ASD pathways, such as NANOSZ2, MRRF, and SP1.

Small Ubiquitin Like Modifier 1 (SUMO1) is associated with cellular processes such as nuclear transport,
transcriptional regulation, apoptosis, and protein stability [27. SUMO1 is involved in signalling pathways:
androgen receptor, interferon-gamma, RNA binding and ubiquitin-protein ligase binding [28l. Prasad and
colleagues used a high-resolution CGH microarray to identify CNV in 696 unrelated ASD cases. They have
identified a novel recurrent 24.7 kb duplication in 3/696 ASD cases and 1 in 5139 control [29]. In addition, a
50.8 kb duplication was also observed in other ASD studies [3°].

Based on the SFARI Gene score system, which linked all evidence towards ASD risk and gene
category, SUMO1 scored 2, suggesting it is a strong candidate for ASD B1l. SUMO1 interacts with an androgen
receptor (AR), which could suppress the RORA expression [32l. SUMO1 also interact with the ARX gene, which
is involved in autistic disorders [33]. Numerous genomic studies have revealed the CBP and its paralog EP300
as the critical hubs in ASD-associated protein 34. E1A-binding protein p300 (EP300) G21S mutation in exon
two was identified in a patient with ASD [35]. This gene encodes for the adenovirus E1A-associated cellular
p300 transcriptional co-activator protein. It acts as a histone acetyltransferase which regulates transcription
via chromatin remodelling. EP300 plays a significant role in cellular proliferation and differentiation. Fei Zheng
and colleagues performed an animal study, showing that CBP and CH1 domains are essential for ASD [361. Mice
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with CBP CH1 (TAZ1) deletion (CBPACH1/ACH1) appear to have an RTS-like phenotype. These include ASD-
relevant repetitive behaviours, hyperactivity, social interaction deficits, motor dysfunction, impaired memory
recognition, and abnormal synaptic plasticity. These results suggested that CBP is crucial in maintaining
normal motor function, cognition, and social behaviour.

Ankyrin Repeat Domain 28 (ANKRDZ28) is a putative regulatory subunit of protein phosphatase 6 (PP6), which
is involved in phosphoprotein substrates recognition and histone acetylation 371. ANKRD28 is not associated
with ASD. However, the other members of ANKRD, namely ANKRD 11 and ANKRD17, have been associated with
ASD. Christian Marshall and colleagues performed a genome-wide assessment for structural abnormalities in
427 unrelated ASD cases and identified a novel locus at ANKRD11 [38], In an animal study, Danis and colleagues
revealed that ANKRD11 knockdown in developing mice or human cortical neural precursors leads to reduced
cellular proliferation, neurogenesis, and abnormal neuronal positioning [9. In addition, Yoda mice
with ANKRD11 point mutation showed similar phenotypes and ASD-like behaviours. This study shows
that ANKRD11 was associated with chromatin and HDAC3 colocalization. The expression of
the ANKRD11 target gene and histone acetylation was altered in Yoda neural precursors. Inhibition of the
histone acetyltransferase activity or HDAC expression 3 restored the ANKRD11 knockdown-mediated
decrease in precursor proliferation. This study proved that ANRKD11 is crucial in chromatin regulation that
controls histone acetylation and gene expression during neuronal development linked to ASD [39].

The nuclear receptor subfamily 3 group C member 2 (NR3(C2) encodes for the mineralocorticoid receptor [41.
NR3C2 protein is vital for activating their target genes by binding to the mineralocorticoid response elements
[40], It acts in the hypothalamic-pituitary-adrenal axis and is associated with stress and anxiety, which are the
common features of autistic individuals. NR3C2 mutation has been identified in ASD whole-exome sequencing
study and (transmission and de novo association (TADA) analysis as a gene strongly enriched for variants
likely to affect ASD risk [91. Holly N Cukier and colleagues identified a stop gain mutation (p.Q919X) in the HPA-
Axis Gene NR3C2 in three brothers with ASD [#1]. Ruzzo and colleagues performed genome sequencing on 2,308
ASD individuals from families with multiple ASD children [#2]. They identified a structural variant (SV) affecting
non-coding regions, implicating recurrent deletions in the promoters of NR3C2. In zebrafish, loss
of NR3C2 function disrupts sleep and social function, corresponding with human ASD-related phenotypes [421.

PTPN11 is encoded by the protein tyrosine phosphatase (PTP) family [43l. The phospho-tyrosine binding
domains mediate interaction with its substrates. PTP is widely expressed in most tissues and is crucial in cell
signalling events for cellular processes [431. Cell growth and migration, transcription regulation, differentiation,
mitogenic activation, and oncogenic transformation are common cellular processes related to PTPN11 [441,
Hani and colleagues determined the role of long non-coding RNA (IncRNA)-associated competing endogenous
RNAs (ceRNAs) in the peripheral blood (PB) of ASD samples to understand the molecular regulatory processes
in ASD using bioinformatics tools [451. They identified four potential DEIncRNA-miRNA-DEmRNA axes in ASD
pathogenesis, including, LINC00472 /hsa-miR-221-3p/PTPN11, ANP32A-IT1/hsa-miR-182-5p /S100A2
,LINC00472/hsa-miR-132-3p/S100A2, and RBMZ26-AS1/hsa-miR-182-5p/S100A2. "JAK-STAT signalling
pathway" and "Adipocytokine are among the enriched signalling pathway related to the immune-related
DEmRNAs. In another study, the author sequenced 208 candidate genes from >11,730 patients and >2,867
controls. They showed ten (13%) genes,
including TANC2, TRIO, COL4A3BP, TBL1XR1, PPP2R5D, DLGAP1, SRGAP3, PTPN11, ADCY5 and ITPR1, which
are unique to the MIS30 category for probands. Their results highlighted some interesting trends. First, there
is twofold enrichment of missense variants with high CADD scores (>30) in probands, which includes autism
risk genes (PTPN11, CACNA1G, TRIP12,and PTK7) and genes of interest (SUPT16H and SCN3A). Second, severe
de novo missense mutations are important in ASD risk prediction [*¢] and autism [#7] Turner and colleagues
investigated the importance of de novo mutations (DNMs) in 516 autism families with 2064 ASD individuals.
Probands with ASD have significant changes in CNVs and SNVs. There was twofold enrichment of missense
variants in PTPN11, CACNA1G, TRIP12, PTK7, SUPT16H and SCN34, indicating the importance of severe de
novo missense mutations in ASD [48]-
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MYH9 gene encodes a conventional non-muscle myosin [91. The encoded protein is crucial in several processes,
including cytokinesis, cell motility and maintenance of cell shape [50. Non-syndromic sensorineural deafness,
autosomal dominant type 17, Epstein syndrome, and Alport syndrome with macrothrombocytopenia are some
diseases associated with this gene [51l. Marchani and colleagues, analyzed 47 members of a multigeneration
pedigree with 11 cases of ASD using three different platforms such as multiallelic linkage marker panel, dense
diallelic marker panel and exome sequencing [52l. MYH9 variant was observed in heterozygous state in four
carriers with risk haplotype but not presented in one affected subject without the risk haplotype. It is a rare
variant since it was reported only once in other databases. However, de novo missense variants have been
identified in ASD probands from several studies, including the Simons Simplex Collection [46], the SPARK cohort
(53], and the Deciphering Developmental Disorders 2017 [541.

PRKCA is involved in many molecular functions by phosphorylating targets such as RAF1, BCL2, CSPG4,
TNNTZ2/CTNT, or by activating signalling cascade MAPK1/3 (ERK1/2) and RAP1GAP. PRKCA is involved in the
positive and negative regulation of cell proliferation, apoptosis, differentiation, migration and adhesion,
tumorigenesis, cardiac hypertrophy, angiogenesis, platelet function and inflammation [54l. De novo missense
variants have been identified in three ASD probands [°. 461 and two probands with unspecified developmental
disorders [551. PRKCA missense mutation was identified in an integrated meta-analysis of de novo mutation
data from a combined dataset of 10,927 individuals with neurodevelopmental disorders [55l. Turner and
colleagues used several methods to identify candidate mutations in eight families. ASD patients showed a
significant (p = 0.03) enrichment of de novo mutations within fetal CNS DNase I hypersensitive sites. This effect
was only observed within 50 kb of ASD risk genes, including genes where dosage sensitivity has been
recognized by recurrent disruptive de novo protein-coding mutations (ARID1B, SCNZA, NR3C2, PRKCA,
and DSCAM) [56],

Conclusion

Thismeta-analysis identified eighteen differentially expressed hub genes that could potentially be used as
potential biomarkers for the diagnosis of ASD. These genes may be directly or indirectly associated with ASD
pathways. However, further confirmation studies such as validation in larger sample sizes and in-vitro and in-
vivo studies are needed to verify these findings.
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Supplementary table 1. The top 29 most dysregulated genes.
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Combined

Combine P-

No EntrezID Gene Name Tstat value Regulation
1 4306 NR3C2 -42.933 8.49E-05 Down-
regulated
2 23243 ANKRD28 -42.288 8.49E-05 Down-
regulated
3 23060 ZNF609 -43.759 8.49E-05 Down-
regulated
4 283267  LINC00294 -40.467 0.00015181 Down-
regulated
5 7559 ZNF12 -39.112 0.00023152 Down-
regulated
6 339345 NANOS2 36.777 0.00041468 Up-regulated
7 5814 PURB -37.177 0.00041468 Down-
regulated
8 5781 PTPN11 -36.425 0.00041468 Down-
regulated
9 122525 C140rf28 -36.767 0.00041468 Down-
regulated
10 10643 IGF2BP3 36.47 0.00041468 Up-regulated
11 28996 HIPK2 -34.933 0.00076387 Down-
regulated
12 6433 SESWAP -34.538 0.00084412 Down-
regulated
13 92399 MRRF 34.274 0.00088271 Up-regulated
14 25782 RAB3GAP2 -33.96 0.00095044 Down-
regulated
15 22973 LAMB2PI1 -33.072 0.001349 Down-
regulated
16 255027 MPV17L 32.575 0.0015042 Up-regulated
17 3308 HSPA4 32.667 0.0015042 Up-regulated
18 6668 SP2 -32.127 0.0016234 Down-
regulated
19 114783 LMTK3 -32.204 0.0016234 Down-
regulated
20 8445 DYRK2 -32.068 0.0016234 Down-
regulated
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21 4627 MYH9 -31.742 0.0016459 Down-
regulated
22 5578 PRKCA -31.888 0.0016459 Down-
regulated
23 669 BPGM 31.788 0.0016459 Up-regulated
24 8742 TNFSF12 -31.14 0.0018245 Down-
regulated
25 29098 RANGRF 31.054 0.0018245 Up-regulated
26 23211 ZC3H4 -31.03 0.0018245 Down-
regulated
27 126917 IFFO2 -31.08 0.0018245 Up-regulated
28 5704 PSMC4 31.177 0.0018245 Up-regulated
29 51248 PDZD11 31.326 0.0018245 Up-regulated
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