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Abstract	
	
Autism	spectrum	disorder	(ASD)	is	a	neurodevelopmental	disorder	primarily	affecting	young	children.	ASD	
is	a	complex	disease	 involving	genetic	and	environmental	 factors.	Environmental	 risk	 factors	 identified	
include	 gestational	 exposure	 to	 pollution,	 pesticides,	 maternal	 infections,	 and	 inflammation.	 Genetic	
mutations	account	for	about	10	–	20%	of	ASD	cases.	Based	on	the	Centre	for	Disease	Control	(CDC)	in	the	
United	States,	1	in	68	children	are	affected	with	ASD.	Recent	advancements	in	genetic	technologies	have	
enabled	the	detection	of	biomarkers	for	the	early	detection	of	diseases	and	risk	identification.	Aim:	This	
meta-analysis	aims	to	determine	the	gene	signatures	involved	in	ASD.		We	conducted	a	meta-analysis	to	
identify	the	differentially	expressed	genes	(DEGs)	in	ASD	microarray	datasets	comprising	122	ASD	and	89	
control	peripheral	blood	mononuclear	cell	(PBMC)	and	whole	blood	samples	from	two	microarray	studies.	
We	performed	gene	ontology,	pathway	enrichment,	and	protein-protein	interaction	(PPI)	network	analysis	
to	identify	associations	between	autism	and	altered	gene	expression	levels.		At	a	false	discovery	rate	(FDR)	
<	0.05,	we	identified	1862	DEGs;	1056	genes	were	upregulated,	and	806	genes	were	downregulated.	DEGs	
revealed	that	dysregulated	genes	were	significantly	enriched	in	the	“Primary	immunodeficiency	pathway”,	
“Influenzae	A”,	“Epstein-Barr	virus	infection	pathway”,	and	other	signalling	pathways	from	the	analyses	
using	Gene	Ontology	(GO)	and	Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG)	pathway	enrichment.	
Subsequently,	protein-protein	interactions	(PPI)	analysis	identified	SUMO1,	SP1,	EGR1,	EP300,	and	VHL	as	
hub	genes	 to	be	 the	potential	biomarkers	 for	ASD.	In	 total,	 eighteen	differentially	expressed	hub	genes	
could	potentially	be	used	as	potential	biomarkers	for	the	diagnosis	of	ASD.	
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Introduction	
Autism	spectrum	disorder	(ASD)	is	a	neurodevelopmental	disorder	related	to	communication	and	behaviour	
deficits.	ASD	is	diagnosed	using	the	Diagnostic	and	Statistical	Manual	of	Mental	Disorders	(DSM-5),	and	the	
clinical	 characteristics	 include	 lack	 of	 communication	 and	 interaction,	 repetitive	 behaviours,	 and	 limited	
interests	 [1].	 It	 is	 a	 broad-spectrum	 disease,	 and	 each	 ASD	 child	 presents	 with	 different	 behavioural	
characteristics.	Based	on	the	Centre	for	Disease	Control	in	the	United	State,	the	prevalence	of	ASD	is	estimated	
about	1	in	68	children	[2].	Based	on	this	figure,	there	are	about	9,000	children	born	with	ASD	yearly	in	Malaysia	
[2,3].	For	Malaysia,	based	on	ASD	screening,	the	most	recent	data	from	2015	infer	that	1	in	635	children	have	
ASD	[4].	
	
The	cause	of	ASD	is	still	unknown.	However,	environmental,	biological,	and	genetic	factors	play	essential	roles	
in	 the	 development	 of	 ASD	 [5].	 Environmental	 risk	 factors	 include	 advanced	 parental	 age,	 prematurity,	
encephalopathy,	low	birth	weight	and	birth	complication	trauma	[6].	Genetic	factors	contribute	to	about	49%	
of	all	ASD	cases	[7].	The	advancements	in	next-generation	sequencing	technology	via	whole-genome	sequencing	
(WGS)	and	whole-exome	sequencing	(WES)	have	facilitated	the	identification	of	ASD-risk	genes.	To	date,	600	
ASD-risk	genes	have	been	identified,	including	ADNP,	ANK2,	ARID1B,	CHD8,	GRIN2B	and	PTEN	[8].The	synaptic	
formation,	 transcriptional	 modelling	 and	 chromatin	 remodelling	 pathways	 are	 the	 common	 pathways	
associated	 with	 ASD	 [9].	 Integrated	 analysis	 of	 the	 brain	 transcriptome	 revealed	 that	 abnormal	 synaptic	
functions	and	neurological	development	contribute	to	the	development	of	ASD.	In	addition,	immune	system	
dysfunction	 is	 also	 associated	 with	 ASD	 [10].	 Inflammatory	 activity	 is	 increased	 in	 ASD	 children	 via	 pro-
inflammatory	biomarkers	[11].	In	a	landmark	paper	on	ASD	and	inflammation,	97	ASD	children	recruited	from	
the	 Childhood	 Autism	 Risks	 from	 Genetics	 and	 Environment	 (CHARGE)	 study	 showed	 increased	 pro-
inflammatory	cytokines	such	as	IL-1β,	IL-6,	IL-8	and	IL-12p40	[12].	High	cytokine	levels	linked	to	stereotypical	
behaviours	suggested	that	immune	system	dysfunction	affects	ASD	core	behaviours	[12].	
	
Maternal	 infections	 and	 fever	 during	 pregnancy	 increase	 the	 risk	 for	 ASD	 [13].	 However,	 the	 association	
between	influenza	and	ASD	is	still	indefinite.	A	study	by	Zerbo	and	colleagues	showed	no	association	between	
maternal	influenza	infection	during	pregnancy	and	ASD	risk.	The	risk	of	ASD	in	their	children	would	be	higher	
if	 the	 mother	 received	 an	 influenza	 vaccination	 during	 their	 first	 trimester.	 However,	 after	 multiple	
corrections,	the	association	was	not	statistically	significant	 [14].	Self-reported	maternal	influenza	infection	is	
associated	with	an	increased	risk	of	infantile	autism	adjusted	HR:	2.3	[95%	CI:	1.0–5.3]),	even	higher	during	
prolonged	fever	[15].	Several	viral	infections	have	been	associated	with	ASD,	including	Epstein-Barr,	influenza,	
and	the	Borna	disease	virus	[16].	However,	the	role	of	viral	infection	in	ASD	is	still	poorly	understood.	Valayi	
and	 colleagues	 investigated	 the	 levels	 of	 anti-Cytomegalovirus	 (CMV)	 and	 anti-Epstein-Barr	 virus	 (EBV)	
antibodies	in	45	ASD	children	and	healthy	controls	[17].	Anti-CMV	IgG	and	IgM	antibodies	in	the	blood	of	ASD	
patients	but	not	statistically	significant	(P<	0.05).	In	ASD	patients,	anti-EBV	IgM	antibodies	were	increased	
significantly	(P<	0.05),	but	the	serum	IgG	level	against	EBV	was	not	significant.	Thus,	it	has	been	postulated	
that	EBV	infection	may	be	associated	with	an	increased	risk	of	ASD.		
	
In	 this	 study,	we	performed	 an	 integrative	bioinformatics	meta-analysis	 of	microarray	data	 from	 the	GEO	
DataSets	(https://www.ncbi.nlm.nih.gov/gds)	to	identify	the	hub	genes	involved	in	ASD.	
	

Materials	and	Methods	
Workflow	of	analysis	strategy	
We	performed	an	integrative	bioinformatics	analysis	of	microarray	data	to	identify	the	hub	genes	in	ASD	as	
potential	diagnostic	biomarkers	from	the	GEO	DataSets	(Fig.	1).	Two	microarray	data	sets	were	used,	including	
GSE111176	[18]	and	GSE18123	[19]	and	the	data	were	analysed	accordingly.	In	total,	211	samples	were	included	
in	this	meta-analysis,	including	122	confirmed	ASD	patients	and	89	healthy	controls.	
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Figure	1:		Workflow	of	analysis	strategy	for	analysis	of	microarray	data	from	the	GEO	DataSets	to	determine	
the	differentially	expressed	genes	and	the	pathways	involved	in	ASD.	
	
	
Data	acquisition	and	data	clean-up	
Two	microarray	studies	depicted	in	Table	1	were	used	to	determine	the	differentially	expressed	genes	from	
the	 blood	 of	 ASD	 patients.	 ASD	microarray	 datasets	 were	 searched	 based	 on	 a	 study	 by	 Voinsky	 and	
colleagues20.	 Only	 studies	 using	 peripheral	 blood	 mononuclear	 cells	 (PBMC)	 and	 whole	 blood	 were	
included.	 Subsequently,	 the	 list	 of	 database	 searches	 of	 publications	 related	 to	 selected	 datasets	 was	
consulted	to	confirm	the	clinical	diagnosis.	A	definitive	diagnosis	was	ascertained	before	blood	collection	
for	microarray	expression	analysis.	All	searches	were	performed	on	public	data	repositories	from	the	GEO	
DataSets21.	 The	 GEO	 accession	 number,	 sample	 type,	 platform,	 and	 matrix	 expression	 data	 were	
downloaded	 for	 each	 study.	 Each	 sample	was	 assigned	 an	 identification	 condition	 and	 class	 (ASD	 and	
control)	in	Microsoft	Excel	format	and	then	saved	as	a	tab-delimited	“.txt”	file.	Subsequent	analysis	was	
conducted	using	the	web-application	NetworkAnalyst	version	3.022.	

 

 

 

 

 

 



 
 

Official	Journal	of	Faculty	of	Medicine,	Universiti	Sultan	Zainal	Abidin,	Malaysia.		
 

87 

eISSN:	2600-8173	
https://doi.org/10.37231/ajmb.2022.6.2.262	
https://journal.unisza.edu.my/ajmb	

	
	
 Table	1:	Characteristics	of	individual	studies	included	in	the	ASD	meta-analysis.	

 
No	 GEO	Accession	

No.	
Samples	

(ASD/control)	
Organism	 Sample	

source	
Platform	 References	

1.	 GSE111176	 n=172,	91/56	 Human	 PBMC	 Illumina	
HumanHT-12	 V4.0	
expression	
beadchip	

Gazestani	 et	 al.,	
2019	(23)	

2.	 GSE18123	 n=99,	31/33	 Human	 Whole	
blood	

Affymetrix	 Human	
Genome	U133	Plus	
2.0	Array	

Kong	et	al.,	2012	
(24)	

	
	
Data	processing,	filtering,	and	summarization	
"Multiple	 Gene	 Expression	 Tables"	were	 selected	 and	 the	 ".txt"	 file	 from	 the	 previous	 step	was	 uploaded	
separately	 for	 each	 study.	 A	 series	 of	 quality	 control,	 including	 ID	 conversion,	 metadata	 check,	 and	
visualization,	 was	 performed.	 Subsequently,	 each	 dataset	 was	 independently	 normalized	 using	 variant	
stabilization	normalization	(VSN)	followed	by	quantile	normalization	before	differential	expression	analysis.	
The	meta-datasets	were	 visually	 inspected	using	 principal	 component	 analysis	 (PCA)	 plots	 to	 identify	 the	
outliers.	 The	 individual	 analysis	 of	 each	 dataset	 was	 carried	 out	 using	 the	 Benjamini–Hochberg's	 False	
Discovery	Rate	(FDR)	with	cut-off	p-values	less	than	0.05.	Each	dataset	has	different	probe	identifiers	(IDs)	
representing	different	 transcripts	and	genes	on	the	array	chip	due	to	different	platforms	used	by	different	
studies,	Illumina	and	Affymetrix.	The	Entrez	ID	will	replace	the	identifier	based	on	the	platform	used	in	each	
study.	 Finally,	 the	meta-datasets	 batch	 effects	were	 adjusted	using	ComBat	 [23],	 and	 the	 batch	 covariate	 is	
known.	A	heatmap	of	differential	expressed	genes	(DEGs)	was	generated	using	the	network	visual	inspection	
tools	of	NetworkAnalyst	and	clustered	using	the	single	linkage	method.	

	
Differential	expression	and	statistical	analysis	
Following	the	normalization	process,	pre-processing	and	data	integrity	checks	of	the	individual	datasets	were	
conducted.	 The	 limma	 package	 from	 the	 R	 package	 in	 the	 NetworkAnalyst	 was	 used	 to	 determine	 the	
differentially	 expressed	 genes	 via	 meta-analysis	 approaches	 [24].	 The	 estimated	 significant	 difference	 of	
expression	and	differential	expression	meta-analysis	of	ASD	and	control	samples	was	performed.	For	each	
study,	only	one	contrast	was	used:	PBMC	versus	control	and	whole	blood	versus	control.	P-value	from	different	
datasets	 was	 combined	 to	 increase	 the	 statistical	 power,	 and	 cross-validation	 with	 Fisher’s	 method	 was	
applied	to	determine	the	estimated	gene	expression	fold	changes	(FC)	and	statistical	significance	across	two	
different	studies.	This	method	produced	the	most	consistent	biological	results.	DEGs	with	adjusted	p-value	less	
than	0.05	and	fold	change	of	more	than	1.5	were	obtained	from	the	meta-analysis.	The	high	confidence	DEGs	
were	used	for	downstream	analysis,	i.e.,	gene	ontology,	pathway	enrichment	analysis,	and	hub	gene	network	
analysis.		
	
Gene	ontology	and	pathway	enrichment	analysis	
Gene	ontology	and	pathway	enrichment	analysis	were	analysed	using	the	Kyoto	Encyclopedia	of	Genes	and	
Genomes	(KEGG)	 [25]	based	pathway	enrichment	identification	module	in	the	NetworkAnalyst	3.0	using	the	
differentially	dysregulated	genes	in	ASD	versus	control.	
	
Protein-protein	interaction	(PPI)	network	analysis	for	hub	gene	identification	
The	hub	genes	were	identified	using	PPI	network	analysis	based	on	the	gene’s	 interaction	in	the	biological	
network.	Following	identifying	DEGs,	the	hub	gene	network	was	generated	using	the	PPI	network	option	in	
Network	Analyst	3.0	using	the	InnateDB	interactive	database	[26].	A	zero-order	PPI	network	was	created	using	
the	original	seed	of	894	dysregulated	genes.	A	network	of 894	nodes	represented	the	proteins,	while	2325	
edges	represented	interaction	between	the	proteins.	
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 Results	

Identification	of	differentially	expressed	genes	from	ASD	related	microarray	dataset	
Principal	component	analysis	(PCA)	of	before	and	after	normalization	of	these	two	datasets	was	shown	
in	Figure	2a.	Our	analysis	identified	1,862	DEGs,	 including	1,056	up-regulated	and	806	down-regulated	
genes	with	a	significance	threshold	of	p-value	 less	than	0.05.	The	most	significantly	dysregulated	genes	
(n=29)	are	shown	in	Supplementary	Table	1.	However,	only	four	genes	overlap	between	PBMC	and	the	
whole	 blood	 expression	 dataset,	 including	AP5S1,	RBBP6,	ANKRD28,	 and	ZNF638	(Figure	 2a).	Figure	
2b	shows	the	heatmap	of	all	the	DEGs	across	two	microarray	datasets.	NANOS2	(combined	Tstat	=	36.777,	
combined	 p-value	 =	 0.00041468),	IGF2BP3	(combined	 Tstat	 =	 36.47,	 combined	 p-value	 =	 0.00041468)	
and	MRRF	(combined	Tstat	=	34.274,	 combined	p-value	=	0.00088271)	were	 the	most	 significantly	up-
regulated	 genes.	 While	NR3C2	(combined	 Tstat	 =	 −42.933,	 combined	 p-value=8.49E-
05),	ANKRD28	(combined	Tstat	=	−42.288,	combined	p-value=	8.49E-05)	and	ZNF609	(combined	Tstat	=	
−43.759,	combined	p-value=8.49E-05)	were	 the	most	down-regulated	genes	across	 the	 two	microarray	
datasets.		

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure	2:	a)	Venn	diagram	of	DEGs.	The	combined	meta-analysis	of	both	datasets	shows	many	dysregulated	
genes	that	were	significantly	different	(a	p-value	of	<	0.05	were	considered	significant).	b)	Heatmap	of	most	
significantly	differentially	expressed	genes.	Heatmap	showing	the	expression	of	the	50	most	significantly	
differentially	expressed	genes	(DEGs)	(p-value	<	0.05)	from	1,862	significant	DEGs	identified	through	the	
meta-analysis.	 In	 total,	 205	 genes	 were	 up-regulated,	 and	 136	 genes	 were	 down-regulated	 in	 ASD	
compared	to	control.	
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 Gene	ontology	and	pathway	enrichment	analysis	of	DEGs	in	ASD	

Based	on	the	Kyoto	Encyclopedia	of	Genes	(KEGG)	pathways,	the	up-regulated	DEGs	in	the	meta-analysis	
of	ASD	datasets	were	enriched	in	“Primary	immunodeficiency	pathway”,	“Influenzae	A”,	and	“Epstein-Barr	
virus	infection	pathway”	with	p	<	0.05.	While	the	downregulated	DEGs	were	enriched	in	the	“Sphingolipid	
signalling	pathway”,	“Phospholipase	D	signalling	pathway”,	and	“Spliceosome”.	
	
Protein-protein	interaction	(PPI)	network	analysis	and	hub	genes	identification	
A	 protein-protein	 interaction	 network	 analysis	 was	 conducted	 to	 identify	 the	 important	 hub	 genes	 to	
extract	more	biologically	relevant	information.	A	degree	above	30	was	set	as	the	cut	off	criterion,	and	we	
identified	18	hub	genes	(Table	2)	and	the	top	five	genes	were	SUMO1,	SP1,	EGR1,	EP300,	and	VHL.	In	the	
NetworkAnalyst,	the	“Zero-order”	network	interaction	generated	894	nodes	and	2,325	edges	where	the	
node	represents	protein	while	edges	are	the	interaction	between	proteins	(Figure	4).	Small	Ubiquitin-like	
Modifier	 1	 (SUMO1)	 with	 betweenness	 centrality	 =	 81255.76;	 degree	 =	 124;	 expression=20.821,	 Sp1	
Transcription	Factor	(SP1)	with	betweenness	centrality	=	41381.92;	degree	=	76;	expression	=	-14.729,	
E1A	Binding	Protein	P300	(EP300)	with	betweenness	centrality	=	37982.03;	degree	=	71;	expression	=	-
21.558,	Early	Growth	Response	1	(EGR1)	with	betweenness	centrality	=	40490.8;	degree	=	67,	and	Von	
Hippel-Lindau	Tumor	Suppressor	(VHL)	with	betweenness	centrality	=	30043.04;	degree	=	55;	expression=	
-16.519.	A	full	list	of	hub	genes	based	on	network	topology	scores	was	shown	in	Supplementary	Table	1.		

 

Table	2:	The	list	of	18	hub	genes	related	to	ASD.		
	

No	 Id	 Label	 Degree	 Betweenness	 Expression	
1	 P63165	 SUMO1	 124	 81255.76	 20.821	
2	 P08047	 SP1	 76	 41381.92	 -14.729	
3	 Q09472	 EP300	 71	 37982.03	 -21.558	
4	 P18146	 EGR1	 67	 40490.8	 16.638	
5	 P40337	 VHL	 55	 30043.04	 -16.519	
6	 Q92793	 CREBBP	 47	 17243.04	 -17.537	
7	 P35222	 CTNNB1	 44	 23373.1	 19.881	
8	 P62158	 CALM3	 43	 22681.42	 -22.686	
9	 P31749	 AKT1	 38	 22188.12	 -14.821	
10	 O15379	 HDAC3	 37	 12010.95	 -18.694	
11	 P05161	 ISG15	 35	 17012.03	 14.907	
12	 P34932	 HSPA4	 34	 13777.56	 32.667	
13	 P22681	 CBL	 33	 15814.78	 -16.919	
14	 Q12906	 ILF3	 32	 12401.2	 -14.901	
15	 P16104	 H2AFX	 32	 10565.3	 14.969	
16	 P27986	 PIK3R1	 31	 13934.52	 -19.518	
17	
18	

O60216	
P24928	

RAD21	
POLR2A	

30	
30	

9983.29	
8772.93	

-17.269	
-18.578	
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Figure	4:	Network	analysis	of	 the	highly	dysregulated	genes.	The	differentially	expressed	genes	(DEGs)	
(ASD	versus	controls)	were	integrated	into	the	Network	Analyst	web	application	to	visualize	the	protein-
protein	 interactions	 network.	 A	 ‘zero-order’	 interaction	 network	with	 894	 nodes	 and	 2325	 edges	was	
created.	 The	most	 highly	 ranked	 nodes	 across	 the	 dataset	 based	 on	 network	 topology	measures	were	
SUMO1	(betweenness	centrality	=	81255.76;	degree	=	124),	and	SP1	(betweenness	centrality	=	41381.92;	
degree	=	76).	

 

Discussion	
Based	 on	 the	 gene	 expression	 profiles	 of	 the	 GSE60438	 dataset,	 a	 total	 of	 1862	 dysregulated	 genes	were	
identified,	including	1056	up-	and	806	down-regulated	DEGs.	GO,	and	KEGG	pathway	enrichment	analyses	of	
DEGs	 suggested	 that	 they	were	 significantly	 enriched	 in	disease-related	ASD.	PPI	network	 generation	 and	
identification	of	hub	genes	were	performed	to	determine	18	significant	hub	genes	with	a	degree	value	>	30.	
Our	results	showed	that	these	18	differentially	expressed	hub	genes	could	be	used	as	potential	biomarkers	for	
the	diagnosis	of	ASD.	From	the	results,	we	could	classify	the	genes	into	two	categories.	First,	associated	genes	
and	functions	are	directly	related	to	ASD	pathways,	for	example,	RBBP6,	SUMO1	and	EP300.	Second,	genes	that	
will	indirectly	impact	the	ASD	pathways,	such	as	NANOS2,	MRRF,	and	SP1.		
		
Small	 Ubiquitin	 Like	 Modifier	 1	(SUMO1)	is	 associated	 with	 cellular	 processes	 such	 as	 nuclear	 transport,	
transcriptional	 regulation,	 apoptosis,	 and	 protein	 stability	 [27].	SUMO1	is	 involved	 in	 signalling	 pathways:	
androgen	 receptor,	 interferon-gamma,	 RNA	 binding	 and	 ubiquitin-protein	 ligase	 binding	 [28].	 Prasad	 and	
colleagues	used	a	high-resolution	CGH	microarray	 to	 identify	CNV	 in	696	unrelated	ASD	cases.	They	have	
identified	a	novel	recurrent	24.7	kb	duplication	in	3/696	ASD	cases	and	1	in	5139	control	[29].	In	addition,	a	
50.8	kb	duplication	was	also	observed	in	other	ASD	studies	[30].		
		
Based	 on	 the	 SFARI	 Gene	 score	 system,	 which	 linked	 all	 evidence	 towards	 ASD	 risk	 and	 gene	
category,	SUMO1	scored	2,	suggesting	it	is	a	strong	candidate	for	ASD	[31].	SUMO1	interacts	with	an	androgen	
receptor	(AR),	which	could	suppress	the	RORA	expression	[32].	SUMO1	also	interact	with	the	ARX	gene,	which	
is	involved	in	autistic	disorders	[33].	Numerous	genomic	studies	have	revealed	the	CBP	and	its	paralog	EP300	
as	the	critical	hubs	in	ASD-associated	protein	[34].	E1A-binding	protein	p300	(EP300)	G21S	mutation	in	exon	
two	was	 identified	 in	a	patient	with	ASD	 [35].	This	gene	encodes	for	the	adenovirus	E1A-associated	cellular	
p300	transcriptional	co-activator	protein.	It	acts	as	a	histone	acetyltransferase	which	regulates	transcription	
via	chromatin	remodelling.	EP300	plays	a	significant	role	in	cellular	proliferation	and	differentiation.	Fei	Zheng	
and	colleagues	performed	an	animal	study,	showing	that	CBP	and	CH1	domains	are	essential	for	ASD	[36].	Mice	
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 with	CBP	CH1	(TAZ1)	deletion	(CBPΔCH1/ΔCH1)	appear	to	have	an	RTS-like	phenotype.	These	include	ASD-

relevant	repetitive	behaviours,	hyperactivity,	social	interaction	deficits,	motor	dysfunction,	impaired	memory	
recognition,	 and	 abnormal	 synaptic	 plasticity.	 These	 results	 suggested	 that	 CBP	 is	 crucial	 in	 maintaining	
normal	motor	function,	cognition,	and	social	behaviour.		
		
Ankyrin	Repeat	Domain	28	(ANKRD28)	is	a	putative	regulatory	subunit	of	protein	phosphatase	6	(PP6),	which	
is	involved	in	phosphoprotein	substrates	recognition	and	histone	acetylation	[37].	ANKRD28	is	not	associated	
with	ASD.	However,	the	other	members	of	ANKRD,	namely	ANKRD	11	and	ANKRD17,	have	been	associated	with	
ASD.	Christian	Marshall	and	colleagues	performed	a	genome-wide	assessment	for	structural	abnormalities	in	
427	unrelated	ASD	cases	and	identified	a	novel	locus	at	ANKRD11	[38].	In	an	animal	study,	Danis	and	colleagues	
revealed	that	ANKRD11	knockdown	in	developing	mice	or	human	cortical	neural	precursors	leads	to	reduced	
cellular	 proliferation,	 neurogenesis,	 and	 abnormal	 neuronal	 positioning	 [39].	 In	 addition,	 Yoda	 mice	
with	ANKRD11	point	 mutation	 showed	 similar	 phenotypes	 and	 ASD-like	 behaviours.	 This	 study	 shows	
that	ANKRD11	was	 associated	 with	 chromatin	 and	 HDAC3	 colocalization.	 The	 expression	 of	
the	ANKRD11	target	 gene	 and	histone	 acetylation	was	 altered	 in	 Yoda	neural	 precursors.	 Inhibition	 of	 the	
histone	 acetyltransferase	 activity	 or	 HDAC	 expression	 3	 restored	 the	ANKRD11	knockdown-mediated	
decrease	in	precursor	proliferation.	This	study	proved	that	ANRKD11	is	crucial	in	chromatin	regulation	that	
controls	histone	acetylation	and	gene	expression	during	neuronal	development	linked	to	ASD	[39].	
		 	
The	nuclear	receptor	subfamily	3	group	C	member	2	(NR3C2)	encodes	for	the	mineralocorticoid	receptor	[40].	
NR3C2	protein	is	vital	for	activating	their	target	genes	by	binding	to	the	mineralocorticoid	response	elements	
[40].	It	acts	in	the	hypothalamic-pituitary-adrenal	axis	and	is	associated	with	stress	and	anxiety,	which	are	the	
common	features	of	autistic	individuals.	NR3C2	mutation	has	been	identified	in	ASD	whole-exome	sequencing	
study	and	(transmission	and	de	novo	association	(TADA)	analysis	as	a	gene	strongly	enriched	 for	variants	
likely	to	affect	ASD	risk	[9].	Holly	N	Cukier	and	colleagues	identified	a	stop	gain	mutation	(p.Q919X)	in	the	HPA-
Axis	Gene	NR3C2	in	three	brothers	with	ASD	[41].	Ruzzo	and	colleagues	performed	genome	sequencing	on	2,308	
ASD	individuals	from	families	with	multiple	ASD	children	[42].	They	identified	a	structural	variant	(SV)	affecting	
non-coding	 regions,	 implicating	 recurrent	 deletions	 in	 the	 promoters	 of	 NR3C2.	 In	 zebrafish,	 loss	
of	NR3C2	function	disrupts	sleep	and	social	function,	corresponding	with	human	ASD-related	phenotypes	[42].		
		
PTPN11	 is	 encoded	 by	 the	 protein	 tyrosine	 phosphatase	 (PTP)	 family	 [43].	 The	 phospho-tyrosine	 binding	
domains	mediate	interaction	with	its	substrates.	PTP	is	widely	expressed	in	most	tissues	and	is	crucial	in	cell	
signalling	events	for	cellular	processes	[43].	Cell	growth	and	migration,	transcription	regulation,	differentiation,	
mitogenic	 activation,	 and	 oncogenic	 transformation	 are	 common	 cellular	 processes	 related	 to	PTPN11	[44].	
Hani	and	colleagues	determined	the	role	of	long	non-coding	RNA	(lncRNA)-associated	competing	endogenous	
RNAs	(ceRNAs)	in	the	peripheral	blood	(PB)	of	ASD	samples	to	understand	the	molecular	regulatory	processes	
in	ASD	using	bioinformatics	tools	[45].	They	identified	four	potential	DElncRNA-miRNA-DEmRNA	axes	in	ASD	
pathogenesis,	 including,	LINC00472/hsa-miR-221-3p/PTPN11,	ANP32A-IT1/hsa-miR-182-5p/S100A2	
,	LINC00472/hsa-miR-132-3p/S100A2,	 and	RBM26-AS1/hsa-miR-182-5p/S100A2.	 "JAK-STAT	 signalling	
pathway"	 and	 "Adipocytokine	 are	 among	 the	 enriched	 signalling	 pathway	 related	 to	 the	 immune-related	
DEmRNAs.	In	another	study,	the	author	sequenced	208	candidate	genes	from	>11,730	patients	and	>2,867	
controls.	 They	 showed	 ten	 (13%)	 genes,	
including	TANC2,	TRIO,	COL4A3BP,	TBL1XR1,	PPP2R5D,	DLGAP1,	SRGAP3,	PTPN11,	 ADCY5	 and	ITPR1,	 which	
are	unique	to	the	MIS30	category	for	probands.	Their	results	highlighted	some	interesting	trends.	First,	there	
is	twofold	enrichment	of	missense	variants	with	high	CADD	scores	(>30)	in	probands,	which	includes	autism	
risk	genes	(PTPN11,	CACNA1G,	TRIP12,	and	PTK7)	and	genes	of	interest	(SUPT16H	and	SCN3A).	Second,	severe	
de	novo	missense	mutations	are	important	in	ASD	risk	prediction	[46]	and	autism	[47].	Turner	and	colleagues	
investigated	the	importance	of	de	novo	mutations	(DNMs)	in	516	autism	families	with	2064	ASD	individuals.	
Probands	with	ASD	have	significant	changes	in	CNVs	and	SNVs.	There	was	twofold	enrichment	of	missense	
variants	 in	PTPN11,	 CACNA1G,	 TRIP12,	PTK7,	 SUPT16H	and	SCN3A,	 indicating	 the	 importance	 of	 severe	de	
novo	missense	mutations	in	ASD	[48].	
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MYH9	gene	encodes	a	conventional	non-muscle	myosin	[49].	The	encoded	protein	is	crucial	in	several	processes,	
including	cytokinesis,	cell	motility	and	maintenance	of	cell	shape	[50].	Non-syndromic	sensorineural	deafness,	
autosomal	dominant	type	17,	Epstein	syndrome,	and	Alport	syndrome	with	macrothrombocytopenia	are	some	
diseases	associated	with	this	gene	 [51].	Marchani	and	colleagues,	analyzed	47	members	of	a	multigeneration	
pedigree	with	11	cases	of	ASD	using	three	different	platforms	such	as	multiallelic	linkage	marker	panel,	dense	
diallelic	marker	panel	and	exome	sequencing	 [52].	MYH9	variant	was	observed	in	heterozygous	state	in	four	
carriers	with	risk	haplotype	but	not	presented	in	one	affected	subject	without	the	risk	haplotype.	It	is	a	rare	
variant	since	it	was	reported	only	once	in	other	databases.	However,	de	novo	missense	variants	have	been	
identified	in	ASD	probands	from	several	studies,	including	the	Simons	Simplex	Collection	[46],	the	SPARK	cohort	
[53],	and	the	Deciphering	Developmental	Disorders	2017	[54].		
	
PRKCA	is	 involved	 in	 many	 molecular	 functions	 by	 phosphorylating	 targets	 such	 as	RAF1,	 BCL2,	 CSPG4,	
TNNT2/CTNT,	or	by	activating	signalling	cascade	MAPK1/3	(ERK1/2)	and	RAP1GAP.	PRKCA	is	involved	in	the	
positive	 and	 negative	 regulation	 of	 cell	 proliferation,	 apoptosis,	 differentiation,	 migration	 and	 adhesion,	
tumorigenesis,	cardiac	hypertrophy,	angiogenesis,	platelet	function	and	inflammation	 [54].	De	novo	missense	
variants	have	been	identified	in	three	ASD	probands	[9,	46]	and	two	probands	with	unspecified	developmental	
disorders	 [55].	PRKCA	missense	mutation	was	 identified	 in	an	 integrated	meta-analysis	of	de	novo	mutation	
data	 from	 a	 combined	 dataset	 of	 10,927	 individuals	 with	 neurodevelopmental	 disorders	 [55].	 Turner	 and	
colleagues	used	 several	methods	 to	 identify	 candidate	mutations	 in	 eight	 families.	ASD	patients	 showed	a	
significant	(p	=	0.03)	enrichment	of	de	novo	mutations	within	fetal	CNS	DNase	I	hypersensitive	sites.	This	effect	
was	 only	 observed	 within	 50	 kb	 of	 ASD	 risk	 genes,	 including	 genes	 where	 dosage	 sensitivity	 has	 been	
recognized	 by	 recurrent	 disruptive	de	 novo	protein-coding	 mutations	(ARID1B,	 SCN2A,	 NR3C2,	 PRKCA,	
and	DSCAM)	[56].	
		
 
Conclusion	
Thismeta-analysis	 identified	 eighteen	differentially	 expressed	hub	 genes	 that	 could	 potentially	 be	 used	 as	
potential	biomarkers	for	the	diagnosis	of	ASD.	These	genes	may	be	directly	or	indirectly	associated	with	ASD	
pathways.	However,	further	confirmation	studies	such	as	validation	in	larger	sample	sizes	and	in-vitro	and	in-
vivo	studies	are	needed	to	verify	these	findings.	
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 Supplementary	table	1.	The	top	29	most	dysregulated	genes.	

No	 EntrezID	 Gene	Name	 Combined	
Tstat	

Combine	P-
value	 Regulation	

1	 4306	 NR3C2	 -42.933	 8.49E-05	 Down-
regulated	

2	 23243	 ANKRD28	 -42.288	 8.49E-05	 Down-
regulated	

3	 23060	 ZNF609	 -43.759	 8.49E-05	 Down-
regulated	

4	 283267	 LINC00294	 -40.467	 0.00015181	 Down-
regulated	

5	 7559	 ZNF12	 -39.112	 0.00023152	 Down-
regulated	

6	 339345	 NANOS2	 36.777	 0.00041468	 Up-regulated	

7	 5814	 PURB	 -37.177	 0.00041468	 Down-
regulated	

8	 5781	 PTPN11	 -36.425	 0.00041468	 Down-
regulated	

9	 122525	 C14orf28	 -36.767	 0.00041468	 Down-
regulated	

10	 10643	 IGF2BP3	 36.47	 0.00041468	 Up-regulated	

11	 28996	 HIPK2	 -34.933	 0.00076387	 Down-
regulated	

12	 6433	 SFSWAP	 -34.538	 0.00084412	 Down-
regulated	

13	 92399	 MRRF	 34.274	 0.00088271	 Up-regulated	

14	 25782	 RAB3GAP2	 -33.96	 0.00095044	 Down-
regulated	

15	 22973	 LAMB2P1	 -33.072	 0.001349	 Down-
regulated	

16	 255027	 MPV17L	 32.575	 0.0015042	 Up-regulated	

17	 3308	 HSPA4	 32.667	 0.0015042	 Up-regulated	

18	 6668	 SP2	 -32.127	 0.0016234	 Down-
regulated	

19	 114783	 LMTK3	 -32.204	 0.0016234	 Down-
regulated	

20	 8445	 DYRK2	 -32.068	 0.0016234	 Down-
regulated	
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21	 4627	 MYH9	 -31.742	 0.0016459	 Down-
regulated	

22	 5578	 PRKCA	 -31.888	 0.0016459	 Down-
regulated	

23	 669	 BPGM	 31.788	 0.0016459	 Up-regulated	

24	 8742	 TNFSF12	 -31.14	 0.0018245	 Down-
regulated	

25	 29098	 RANGRF	 31.054	 0.0018245	 Up-regulated	

26	 23211	 ZC3H4	 -31.03	 0.0018245	 Down-
regulated	

27	 126917	 IFFO2	 -31.08	 0.0018245	 Up-regulated	

28	 5704	 PSMC4	 31.177	 0.0018245	 Up-regulated	

29	 51248	 PDZD11	 31.326	 0.0018245	 Up-regulated	

 

	

	
	

 
 
 


