Cytotoxicity and Antiviral Activity of *Kyllinga nemoralis* Methanolic Extract

Syamila Izzati Mohd Saidi and Noor Zarina Abd Wahab

School of Biomedical Science, Faculty of Health Science, Universiti Sultan Zainal Abidin, Malaysia

Corresponding author: zarinawahab@unisza.edu.my

Received: 25th July 2022 Accepted: 23rd August 2022 Published: 30th October 2022

Abstract

Herpes Simplex Virus (HSV) is a double-stranded DNA virus in the Herpesviridae family. The most prevalent in humans is Human Simplex Virus Type 1 (HSV-1). It can reach the brain without causing the symptoms [1]. Currently, the most antiviral drug used is Acyclovir (ACV); nucleotide analogues target DNA polymerase inhibiting viral replication. However, ACV drug-resistant occurs, especially in immunocompromised patients [2]. Therefore, alternate therapy for patients with established resistance was required. Plant extract is commonly used as antiviral agent. *Kyllinga nemoralis* is known as White Spike Head had antiviral, antibacterial, antibleeding and anti-poisoning properties [3]. It contains antiviral sources such as the highest flavonoid and flavonol concentrations [4].

The objective of this experimental study was to investigate the potential of *K. nemoralis* methanolic extract as antiviral agent against HSV-1. The root of *K. nemoralis* methanolic plant extract, Vero Cells and HSV-1 were used in this study. The Cytotoxic Concentration (CC50) of the *K. nemoralis* methanolic extract against Vero Cells and the antiviral activity of *K. nemoralis* methanolic extract against HSV-1 by using post-treatment, pre-treatment and virucidal assay were performed in this study.

Results showed that the percentage of cell population versus concentration of root of *K. nemoralis* methanolic extract (figure 1). The CC50 of this extract was determined at 0.91 mg/mL. This showed that the root of *K. nemoralis* methanolic extract was considered not toxic to the cells as the CC50 of extract showed more than 4 µg/mL [5].
Figure 1: The effect of different concentrations of root of *K. nemoralis* methanolic extract towards the population of Vero cells.

Figure 2 shows the antiviral activity of root of *K. nemoralis* methanolic extract against HSV-1 via post-treatment, pre-treatment and antiviral assay. In post-treatment, the SI value of extract was 12.64 which is more than 10. When the SI value is higher than 10, it is considered to possess a high potential of antiviral agent [6].

The results indicate that the root of *K. nemoralis* methanolic extract was more effective in protecting the Vero cells. In pre-treatment, the SI value of the extract was 8.27. This finding shows that the root of *K. nemoralis* methanolic extract had a moderate ability to bind to the Vero cells and inhibited the binding of HSV-1 to the cell surface of the Vero cells. In a virucidal test, the root extract towards HSV-1 showed the SI value was 8.125. This data suggests that the root of the extract was moderately inactivates the extracellular component of HSV-1.

In conclusion, the findings of this study show that *K. nemoralis* methanolic extract was non-toxic to the Vero cells and has the potential to be an antiviral agent against HSV-1.

Keyword
Antiviral assay, Herpes simplex virus type 1, *Kyllinga nemoralis*

Official Journal of Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia.
Acknowledgment
The authors would like to thank the University Sultan Zainal Abidin for providing the laboratory facilities.

References

2. Kook I. REGULATION OF ALPHA-HERPESVIRUS REACTIVATION FROM LATENCY BY. *Univ Nebraska - Lincoln Digit Nebraska - Lincoln Diss*. Published online 2016.

