

PENERBIT Universiti Sultan Zainal Abidin

Asian Journal of Medicine and Biomedicine

Potential Pathogenic Bacteria in Loose Oil Palm Fruit (LOPF) from Smallholdings in Serian, Sarawak

Casey Anak Nubun¹, Samuel Lihan²

¹Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan Sarawak ²Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan Sarawak

*Corresponding author: casey@moh.gov.my

Received: 25th July 2022 Accepted: 23rd August 2022 Published: 30th October 2022

Abstract

Oil palm (*Elaeis guineensis*) is a species of palm tree cultivated mainly for its oil. Malaysia is the second largest producer of oil palm behind Indonesia. During the harvesting of oil palm fruit bunch, some over ripped fruits will get detached from the fruit bunch and these loose fruits will be contaminated with bacteria from the soil. Collecting the loose fruits from the ground is normally done manually by hand and this may allow the transmission of bacteria from the soil to the workers.

According to Table 1, this study reported on the microbial contents of the oil palm loose fruits collected from three different locations of smallholding oil palm in Serian Sarawak, Malaysia. The result shows that F3S3 at Kampung Raeh Baru has the highest number of colonies, 20.4×10^5 CFU mL-1, while the lowest number of colonies was at F2S1, which was at Kampung Beradau, Siburan, with 2.4×10^5 CFU mL-1.

Table 1: Number of bacteria colonies of each sampling station

Locations	Sampling Stations	Colony Forming Unit (CFU)/mL	
	F1S1	4.4 x 10 ⁵	
Kampung Paon Rimu (F1)	F1S2	3.1×10^5	
	F1S3	3.3×10^5	
	F2S1	2.4×10^5	
	1231		
Kampung Beradau (F2)	F2S2	4.4×10^5	
	F2S3	3.6×10^5	

Official Journal of Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia.

	F3S1	15.2×10^5
V D L D (FD)	F3S2	16.0 x 10 ⁵
Kampung Raeh Baru (F3)	F3S3	20.4×10^5
	F3S4	7.2 x 10 ⁵

^{*}RED: The lowest counts; BLUE: The highest counts

This study was aimed to isolate and identify bacteria on the loose oil palm fruits (LOPF) and determine the microbial quality which may affect the safety and health of the farm workers. Loose oil palm fruits were collected from the ground of three smallholder farms located in Serian, Sarawak. The fruit were weighted and stomached with peptone water in stomacher bags and plated on Nutrient agar. The 16S rRNA PCR was carried out for the bacterial growing on the plate. The purified DNA product was sent to Apical Scientific Sdn. Bhd. for DNA sequencing. The sequences obtained were directly compared with the sequences in the Genbank through the Blastn server. The result obtained shows in Table 2 that 15 different bacterial species were identified from the loose fruit oil palm samples including *Chryseobacterium indologenes, Enterobacter hormaechei*, Klebsiella pneumonia, Klebsiella quasipneumoniae, Klebsiella sp., Pantoe dispersa, Pantoe sp., Pseudomonas aeruginosa, Pseudomonas mendocina, Pseudomonas nitroreducens, Serratia marcescens, Simplicispira metamorpha.

Table 2: Identity of the bacteria strain and its percentage similarity

Isolate	Colony Apperance	Organism	Accession Number	Percentage Similarity		
F1S1:1	Pink	Klebsiella pneumoniae	CP085863. 1	100%		
F1S1:2	Brownish Yellow	Pseudomonas mendocina	MT526544. 1	95.78%		
F1S1:3	Pink	Klebsiella pneumoniae	CP085863. 1	100%		
F1S1:4	Pink	Klebsiella sp.	MT550667. 1	100%		
F1S1:5	Pink	Klebsiella pneumoniae	CP091582. 1	100%		
F1S2:2	Pink	Klebsiella quasipneumoniae	MT125950. 1	100%		
F1S2:3	Pink	Klebsiella sp.	MT550667. 1	100%		
F1S3:2	Pink	Klebsiella sp.	MT550667. 1	100%		
F1S3:4	Pink	Klebsiella pneumoniae	CP085863. 1	100%		
F1S3:5	Pink	Klebsiella pneumoniae	OM243108.1	99.59%		
F2S1:1	Yellowish orange	Serratia marcescens	KC206270. 1	99.41%		
	Official Journal of Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia.					

144

F2S1:4	Yellowish orange	Serratia marcescens	AF511431. 1	99.79%
F2S1:5	Yellowish orange	Serratia marcescens	MT131170. 1	99.79%
F2S2:1	White creamy	Enterobacter hormaechei	CP053190. 1	98.09%
F2S3:1	Yellowish orange	Serratia marcescens	MT131170.1	100%
F3S1:3	Greenish	Pseudomonas aeruginosa	MK993516. 1	100%
F3S1:4	Greenish	Pseudomonas nitroreducens	MT464466. 1	100%
F3S2:1	Yellowish	Chryseobacterium indologenes	LN866620.1	99.38%
F3S2:2	Yellowish orange	Serratia nematodiphila	MN691953. 1	99.79%
F3S2:3	Yellow	Pantoe dispersa	MT540024. 1	100%
F3S2:4	Yellow	Pantoe sp.	KU597508. 1	100%
F3S2:5	Yellow	Pantoe dispersa	MT540024. 1	100%
F3S3:1	White creamy	Enterobacter hormaechei	CP053190. 1	98.09%
F3S3:2	White colorless	Leclercia sp.	CP049786. 1	98.60%
F3S3:4	Brownish cream	Simplicispira metamorpha	MW079906. 1	97.82%
F3S3:5	Cream	Kosakonia oryzae	MT613376. 1	100%

Some of the bacterial species could be pathogenic, hence, it is important to communicate the findings of this research to provide sufficient knowledge to the farmers about the biological hazards associated with the loose oil palm fruits in order for them to take precaution in proper handling of the loose fruits.

Keywords

Loose oil palm fruits, Bacteria, Public health, Farm workers

References

- Meena VD, Dotaniya ML, Saha JK, Patra AK. Antibiotics and antibiotic resistant bacteria in Wastewater: impact on environment, soil microbial activity & human health. *African Journal of Microbiology Research*. 2015;9(14):965-978.
- 2. Kazuo I, Noriomi I, Masahiro K, Norihito T, Jun S, Toru K, Shinichi T, Yoshitada E, Kenji I, Takashi M, Takuya M, Kotaro M, Shigefumi M. Clinical characteristics in blood stream infections caused by *Klebsiella pneumoniae*, *Klebsiella variicola* and *Klebsiella quasipneumoniae*: a comparative study, Japan, 2014-2017. *BMC Infectious Disease*. 2019;9: 946.
- 3. Gema C, Esther G, Pilar R, Elisa G, Marisa R, Antonio L. *Chryseobacterium indologenes* infection in a newborne: a case report. *Journal of Medical Case Report*. 2011;5:10.

Official Journal of Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia.

eISSN: 2600-8173

https://doi.org/ 10.37231/ajmb.2022.6.S1.575 https://journal.unisza.edu.my/ajmb

4. Darius EP, Muhammad FH. Effects of collecting systems and plantation environment on debris accumulation in a collected oil palm loose fruit. *Proceeding of International Conference on Plant Physiology*. 2014;147-151.