DETERMINING THE ANTECEDENTS OF VIEWER SATISFACTION USING BIG DATA ANALYTICS ON CHINESE WEB DRAMAS

Authors

  • Pei Cao School of Multimedia Technology and Communication, Universiti Utara Malaysia, 06010 Sintok, Malaysia
  • Jamilah Jamal School of Multimedia Technology and Communication, Universiti Utara Malaysia, 06010 Sintok, Malaysia

DOI:

https://doi.org/10.37231/apj.2025.8.SI1.799

Abstract

Chinese web dramas have gained an increasing number of viewers with differing levels of satisfaction. However, the previous studies on web drama viewer satisfaction have neglected the comprehensive research on the antecedents of this construct. Based on the Uses and Gratifications Theory (UGT), Channel Complementarity Theory (CCT), and relevant literature, this study postulates that viewing behaviour and social media engagement of viewers are the antecedents of web drama viewer satisfaction. This study employs a new research method, named unobtrusive online research, to collect big data from 288 Chinese web dramas, embracing SmartPLS 4.1 to undertake the analysis. The findings reveal direct effects between the three constructs and the partial mediating effect of viewers' social media engagement. Additionally, viewing behaviour and social media engagement of viewers are proven to be antecedents of viewer satisfaction; meanwhile, social media engagement of viewers is found to partially mediate the relationship between viewing behaviour and viewer satisfaction. This study enriches CCT and UGT research on web drama and social media utilisation to gain gratification. Meanwhile, it is recommended that the web drama industry and practitioners make great use of the prominent role of social media.

 

Keywords: Big Data; Chinese Web Drama Viewer; Social Media Engagement; Viewer Satisfaction; Web Drama Viewing Behaviour 

References

Al-Haddad, S., Sharabati, A.-A. A., Al-Khasawneh, M., Maraqa, R., & Hashem, R. (2022). The influence of corporate social responsibility on consumer purchase intention: The mediating role of consumer engagement via Social Media. Sustainability, 14(11), 6771. https://doi.org/10.3390/su14116771

Babbie, E. R. (2020). The practice of Social Research. Cengage Learning Asia Pte Ltd.

Boyle, M. P., & Schmierbach, M. (2024). Applied Communication Research Methods: Getting started as a researcher. Routledge.

CNNIC. (2023). The 52nd Statistical Report on China’s Internet Development. https://cnnic.cn/n4/2023/0828/c199-10830.html

Curran-Everett, D. (2018). Explorations in statistics: The log transformation. Advances in Physiology Education, 42(2), 343–347. https://doi.org/10.1152/advan.00018.2018

Chen, W. Y. & Ren, L. X. (2019). Research on the Value of Audience based Online Dramas. Movie Literature (01), 40-42 doi:CNKI:SUN:DYLX.0.2019-01-010.

Dutta-Bergman, M. J. (2004a). Complementarity in consumption of news types across traditional and new media. Journal of Broadcasting & Electronic Media, 48(1), 41–60. https://doi.org/10.1207/s15506878jobem4801_3

Elareshi, M., Habes, M., Al-Tahat, K., Ziani, A., & Salloum, S. A. (2022). Factors affecting social TV acceptance among generation Z in Jordan. Acta Psychologica, 230, 103730. https://doi.org/10.1016/j.actpsy.2022.103730

Hayes, A. F. (2009). Beyond baron and Kenny: Statistical mediation analysis in the New Millennium. Communication Monographs, 76(4), 408–420. https://doi.org/10.1080/03637750903310360

Hair, Joseph F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019b). Multivariate Data Analysis. Cengage Learning.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modeling (PLS‐SEM) (3rd ed.). Sage.

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019a). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/ebr-11-2018-0203

Habes, M., Elareshi, M., Almansoori, A., Ziani, A., & Alsridi, H. (2022). Smart interaction and social TV used by Jordanian University Students. Technology in Society, 71, 102110. https://doi.org/10.1016/j.techsoc.2022.102110

Hosseini, M., Wieczorek, M., & Gordijn, B. (2022). Ethical issues in social science research employing Big Data. Science and Engineering Ethics, 28(3). https://doi.org/10.1007/s11948-022-00380-7

Han, R., Ali, M. N., & Salleh, M. A. (2023). Media effects and audience satisfaction: A comprehensive study of self-transcendence in online talk show documentaries from a Social Sciences Viewpoint. Pakistan Journal of Life and Social Sciences (PJLSS), 21(2). https://doi.org/10.57239/pjlss-2023-21.2.0015

Hu, Y. (2021). Speech and Response: The Construction of Audience Discourse in Online Drama. Fudan University Press Co., Ltd

Iwanowska, M., Zawadzka, A., & Kondratowicz, B. (2023). News media exposure and life satisfaction in the COVID-19 pandemic: A moderated mediation model of covid-19 fear and worries and gender. Current Issues in Personality Psychology. https://doi.org/10.5114/cipp/156172

Kim, B.-K., & Kim, K.-O. (2020). Relationship between viewing motivation, presence, viewing satisfaction, and attitude toward tourism destinations based on TV Travel Reality Variety Programs. Sustainability, 12(11), 4614. https://doi.org/10.3390/su12114614

Katz, E., Blumler, J.G. & Gurevitch, M. (1974). Utilization of mass communication by the individual. In J.G. Blumler & E. Katz (eds), The Uses of Mass Communication (pp. 19–32). Beverly Hills, CA: Sage.

Khatri, P., Raina, K., Dutta, S., Pahwa, H., & Kumari, P. (2021). Reaction to COVID-19, social media engagement and well-being: A mediation analysis. Labour & Industry: A Journal of the Social and Economic Relations of Work, 31(4), 457–484. https://doi.org/10.1080/10301763.2021.1966293

Liu, H., Tan, K. H., & Pawar, K. (2022). Predicting viewer gifting behavior in sports live streaming platforms: The impact of viewer perception and satisfaction. Journal of Business Research, 144, 599–613. https://doi.org/10.1016/j.jbusres.2022.02.045

Limic, S., & Limb, S.-J. (2023). Self-produced K-pop web entertainment program production components and their effect on Global Audience’s program satisfaction and artist loyalty—focusing on “going seventeen.” SAGE Open, 13(4). https://doi.org/10.1177/21582440231218134

Mi, C., Li, M., & Wulandari, A. F. (2022). Predicting video views of web series based on comment sentiment analysis and improved stacking ensemble model. Electronic Commerce Research. https://doi.org/10.1007/s10660-022-09642-9

McQuail, D. M., & Deuze, M. (2020). McQuail’s media and mass communication theory. SAGE Publications.

Menon, D. (2022). Purchase and continuation intentions of over -the -top (OTT) video streaming platform subscriptions: A uses and gratification theory perspective. Telematics and Informatics Reports, 5, 100006. https://doi.org/10.1016/j.teler.2022.100006

Majeed, M., Asare, C., Fatawu, A., & Abubakari, A. (2022). An analysis of the effects of customer satisfaction and engagement on social media on repurchase intention in the hospitality industry. Cogent Business and Management, 9(1). https://doi.org/10.1080/23311975.2022.2028331

Ng, M., Law, M., Lam, L., & Cui, C. (2022). A study of the factors influencing the viewers’ satisfaction and cognitive assimilation with Livestreaming Commerce broadcast in Hong Kong. Electronic Commerce Research, 23(3), 1565–1590. https://doi.org/10.1007/s10660-022-09656-3

Naeem, M., Jamal, T., Diaz-Martinez, J., Butt, S. A., Montesano, N., Tariq, M. I., De-la-Hoz-Franco, E., & De-La-Hoz-Valdiris, E. (2022). Trends and future perspective challenges in Big Data. Smart Innovation, Systems and Technologies, 309–325. https://doi.org/10.1007/978-981-16-5036-9_30

Scharrer, E., & Ramasubramanian, S. (2021). Quantitative research methods in communication: The power of numbers for social justice. Routledge.

Salkind, N. J. (2022). Exploring research (10th ed.). Pearson Education Limited.

Streukens, S., & Leroi-Werelds, S. (2016). Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results. European Management Journal, 34(6), 618–632. https://doi.org/10.1016/j.emj.2016.06.003

Song, Y. (2023). Optimization of Quantitative Research Methods in social sciences in the era of Big Data. Acta Informatica Malaysia, 7(2), 92–96. https://doi.org/10.26480/aim.02.2023.92.96

Song, Z. (2020). Analysis about why online drama attracted audiences in China. The European Journal of Humanities and Social Sciences, (4), 113–118. https://doi.org/10.29013/ejhss-20-4-113-118

Tsai, H.-Y. S., & Lin, H.-F. (2022). Social TV and audience engagement: Investigating the relationship between Facebook engagement and TV performance of the voice (USA). Online Information Review, 47(3), 453–468. https://doi.org/10.1108/oir-06-2021-0293

Tencent Inc. (2024). Environmental, Social and Governance Report 2023. https://data.eastmoney.com/notices/detail/00700/AN202404081630058259.html

Tang, L., Li, J., Du, H., Li, L., Wu, J., & Wang, S. (2022). Big Data in forecasting research: A literature review. Big Data Research, 27, 100289. https://doi.org/10.1016/j.bdr.2021.100289

Thongmak, M. (2021). Predictors of online search performance: A uses and gratification perspective. Knowledge Management & E-Learning, 13(3), 367–389. https://doi.org/10.34105/j.kmel.2021.13.019

Wang, C. Y. (2019). Officially Sanctioned Adaptation and Affective Fan Resistance: The Transmedia Convergence of the Online Drama Guardian in China. Series - International Journal of TV Serial Narratives, 5(2), 45–58. https://doi.org/10.6092/issn.2421-454X/9156

Wang, L. X. (2022). Research on Chinese Web Drama from the Perspective of Youth Subculture: 2000-2019. China International Broadcasting Press.

Yue, H. S. (2022). Research on the Innovative Development of Online Variety Shows in the New Media Era. Art and Performance Letters, 3(4), 1-5. DOI: http://dx.doi.org/10.23977/artpl.2022.030401

Zhou, L. (2022). Research on quantitative model of brand recognition based on sentiment analysis of Big Data. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.915443

Zhao, Y., Xu, X., & Wang, M. (2019). Predicting overall customer satisfaction: Big Data Evidence from hotel online textual reviews. International Journal of Hospitality Management, 76, 111–121. https://doi.org/10.1016/j.ijhm.2018.03.017

Zhou, Y., & Zhao, X. (2021). Audio-visual Communication in the Multiscreen Era. China Renmin University Press.

Downloads

Published

2025-09-07

How to Cite

DETERMINING THE ANTECEDENTS OF VIEWER SATISFACTION USING BIG DATA ANALYTICS ON CHINESE WEB DRAMAS. (2025). Asian People Journal (APJ), 8(SI1), 39-52. https://doi.org/10.37231/apj.2025.8.SI1.799