THE EFFECT OF EXPLICIT FORM-FOCUSED INSTRUCTION ON THE IMPLICIT KNOWLEDGE OF MALAYSIAN ENGLISH AS SECOND LANGUAGE LEARNERS

Majid Hojjat & *Zuwati Hasim

Faculty of Education, University of Malaya,
50603 Kuala Lumpur, Malaysia.
*Corresponding author: zuwati_hasim@um.edu.my

Received: 04.02.2022 Accepted: 19.04.2022

ABSTRACT

Background and Purpose: Explicit form-focused instruction has significantly contributed to second language learners’ explicit knowledge. However, the effect of explicit form-focus instruction (FFI) on second language learners’ implicit knowledge of grammatical forms has been argued by scholars. This study examined the effectiveness of explicit FFI on implicit knowledge of ESL learners.

Methodology: This quasi-experimental research was conducted at a selected international school in the Klang Valley, Malaysia. The collected data were analysed through the application of ANCOVA and Scheffe’s test.

Findings: The findings showed that when explicit FFI was implemented in the form of metalinguistic information and metalinguistic explanation of the target form, the implicit knowledge of students would not increase. This suggested that the role of explicit FFI as the most effective and reliable tool to enhance implicit knowledge of learners should be doubted.

Contributions: The theoretical implication of this study indicates that explicit FFI does not contribute to development of the second language implicit knowledge. Pedagogically, this study’s findings could be beneficial either for teachers looking for an effective method of teaching or for researchers to utilise it in their studies.
Keywords: Form-focused instruction (FFI), explicit FFI, implicit knowledge, explicit knowledge


1.0 INTRODUCTION

According to Spada (2011), in the last thirty years, the researchers of form-focused instruction (FFI) have addressed both the learning process and the language mechanism. Researchers are no longer concerned about the effect of FFI on second language acquisition (SLA) as there is enough evidence to prove that form-focused instruction affects SLA positively (Ellis, 2002). Despite being acknowledged that FFI has a positive effect on SLA, measuring implicit knowledge as the outcome of FFI is a matter of controversy due to the focus of past studies on explicit knowledge such as grammatical ability (Kang, Sok, & Han, 2019). As a result, focusing on implicit knowledge that aids learners in communication skills has been neglected.

Analysing FFI studies, one can notice how the researchers’ (Ellis, 2001; Xu & Lyster, 2014; Kamiya, 2015) focus on the direction of FFI studies and the desired type of knowledge has changed. However, there is a clear gap, indicating the majority of explicit FFI studies have focused on explicit knowledge of students. It also highlights the fact that only a few researchers have attempted to assess and measure educators’ implicit knowledge (Andringa, Glopper, & Hacquebord, 2011; Shintani & Ellis, 2013; Tammenga-Helmantel, Arends, & Cantinas, 2014; Xu & Lyster, 2014; Kamiya, 2015). Past research has mainly focused on explicit knowledge, such as grammatical skills, and it has neglected implicit knowledge, which aids learners in communicative activities (Ellis, 2008; Kang et al., 2019; Spada, 2011; Nguyen, Pham, & Pham, 2012). The reason for researchers to focus on explicit instruction and explicit knowledge was mainly because of the difficulties in distinguishing between explicit and implicit knowledge and also lack of proper tests to measure explicit and implicit knowledge separately (Ellis et al., 2009; Ebadi, 2015).

As a result, there appears to be a consensus among researchers that assessing learners’ implicit knowledge is crucial and it leads to the suggestion that measuring the implicit knowledge and also examining the interface between two types of knowledge should not be neglected.
In a meta-analysis of 49 FFI research, Norris and Ortega (2000), as well as others (e.g. Kang et al., 2019; Nassaji, 2016; Ranta & Lyster, 2018; Sok, Kang, & Han, 2019; Tedick & Young, 2016) have given sufficient evidence in support of FFI and its profound impact on SLA, particularly in the development of explicit knowledge. According to Spada (2011), three quarters of FFI research has concentrated on explicit outcomes and explicit assessments. However, the question is whether FFI aids acquiring implicit knowledge, the sort of spontaneous fluency that aids students in communicative activities (Ellis, 2005, as cited in Spada, 2011).

Unlike explicit instruction that grammatical forms are taught directly and explicitly, in implicit instruction, the grammatical forms are not taught directly, and learners must infer and guess the grammatical forms (Ellis, 2001). The benefit of explicit instruction is due to the assessments that evaluate learners’ explicit knowledge, such as grammatical development, and ninety percent of assessments have measured learners’ explicit knowledge as a result of instruction (Spada, 2011). Since 2000, less than a third of all FFI studies have worked on implicit FFI and implicit knowledge, and most of them were conducted in less than two weeks (Sok et al., 2019).

Furthermore, except for focusing on the type of knowledge learned from FFI, SLA researchers need to consider that the longer duration of the intervention and the larger number of assessment tests will help them to measure the outcome of their studies more accurately (Sok et al., 2019).

Moreover, it is widely agreed that a reasonably distinct explicit or implicit evaluation of language constructs can be carried out using measures that consider the distinct criteria of the two types of language knowledge which helps to have a better and clearer understanding of the desired type of knowledge and more accurate outcomes as a result of FFI (Bowles, 2011; Ellis & Loewen, 2007; Ellis, Loewen, & Erlam, 2006; Ranta & Lyster, 2018; Sok et al., 2019). Experiments in assessing linguistic knowledge have offered a good reason for the distinction between implicit and explicit knowledge; however, specific tests of either implicit or explicit knowledge are difficult to produce (Ellis, 2005). Ellis et al. (2009, p. 20) states “Most of the studies that investigated the relative effectiveness of implicit and explicit instruction [specifically corrective feedback] relied on methods of measuring acquisition that favoured explicit instruction”. According to Ellis et al. (2006, p. 351) “it can be argued that they were biased in favour of explicit corrective feedback”. Few studies have looked into this topic so far, owing to difficulties in distinguishing between explicit and implicit knowledge (Ebadi, 2015). This measurement issue was added to the debate
of the efficacy of explicit instruction (Ebadi, 2015; Hulstijn, 2005; Suzuki & DeKeyser, 2017; Wang, 2017). As a result, more research is required to evaluate implicit knowledge as a result of FFI over a longer period of time using appropriate types of tests that assess implicit and explicit knowledge separately.

Corrective feedback as a means to improve implicit and explicit FFI has been addressed as a controversial topic in recent years due to the interface between implicit and explicit knowledge (whether explicit knowledge changes to implicit knowledge) based on the belief that L2 development is significantly different from L1 acquisition (Al-Ahmad, Al-Jarrah, & Al-Jarrah, 2015; Alzahrani, 2016; Ebadi, 2015; Suzuki & DeKeyser, 2017; Wang, 2017). Consequently, further research involving corrective feedback as techniques of FFI is needed to evaluate the interface between implicit and explicit knowledge of L2 learners.

The interface between implicit and explicit knowledge has been interpreted in a number of ways by different researchers. According to some writers (Krashen, 2003; Truscott, 1996), explicit knowledge cannot be transformed into implicit knowledge (non-interface viewpoint). Others (Bialystok, 1991; Hulstijn, 1990) believe that explicit knowledge transforms into implicit knowledge through practice (strong-interface viewpoint). Some researchers (Ellis, 2008; Ebadi, 2015; Suzuki & DeKeyser, 2017) believe that explicit knowledge influences learning progress and has contributed to the growth of implicit knowledge indirectly (weak-interface position). The weak interface model assumes that two forms of knowledge, explicit and implicit, have a direct and indirect effect on each other. Also, it shows that practice guides the selection and final application of language processing in output (Ellis & Loewen, 2007; Suzuki & DeKeyser, 2017). It is also demonstrated that explicit knowledge gained through practice can only change to implicit knowledge when learners have learnt enough to match the new linguistic form; in these cases, learners' current implicit knowledge acts as a filter, allowing them to explore explicit knowledge and incorporate with the interlanguage structure (Ellis & Loewen, 2007; Suzuki & DeKeyser, 2017).

The literature on the interface between implicit and explicit knowledge has proposed that explicit knowledge facilitates the development of implicit knowledge, but no empirical studies have been conducted due to methodological restrictions (e.g., a lack of accurate implicit knowledge tests) (Suzuki & DeKeyser, 2017). This study tried to provide empirical data to fill the gap between theory and practice by independently analysing implicit and explicit knowledge taking
into consideration of the critics of non-interface and strong-interface viewpoints. The weak interface position was selected in this research to establish a balanced stance by ignoring the non-interface and strong-interface perspectives’ extreme views. This moderate position was taken to incorporate the focus-on-form teaching method, which focused on both context and form, as well as explicit and implicit knowledge.

It is required to use measures that incorporate the separate requirements of the two forms of language knowledge to measure implicit and explicit knowledge (Ebadi, 2015; Sok et al., 2019). Although it is difficult to have separate measurements of the two types of knowledge (Ellis, 2015), experimental achievements in evaluating language knowledge can provide better opportunities to measure implicit and explicit knowledge separately. The impact of different types of corrective feedback on different language features is linked to the explicit FFI effectiveness which needs more research to specifically explore the impact of corrective feedback on students’ implicit and explicit knowledge (Ellis, 2005; Ebadi, 2015; Suzuki & DeKeyser, 2017).

As a result, the objective of this research is to investigate whether explicit FFI, particularly explicit corrective feedback in the form of metalinguistic information and metalinguistic explanation of the target form, can affect implicit knowledge of learners and also by considering the weak-interface position, it investigates whether explicit knowledge of learners which have been developed by practice could change to implicit knowledge.

2.0 METHODOLOGY

2.1 Research Design

Quasi-experimental is the design of the current study as the researcher could not merge the classes or divide them randomly to prevent disrupting the school schedule, and since the school’s officials did not encourage the participants to be selected randomly, the researcher did not do so. As a result, this research was identified as a quasi-experimental study with two intact groups (one experimental and one control) of students of an intermediate level from an international school in Klang Valley, Malaysia.

2.2 Research Population, Setting, Sample, and Sampling Method

This research was carried out in a Malaysian international school and the number of participants were 30. The researcher selected an international school to perform this study because he has
taught there and knew the school’s programs properly. The number of students chosen assured that the sample size for this quasi-experimental study was sufficient. Since each class at the selected school had 15 students, the researcher had to select two classes in order to achieve the desired sample size. The respondents were selected using a purposive sampling method since there were two intact groups. The medium of instruction in this school was English, and the subjects were all from Malaysia practicing English as a second language. The students were 12 to 13 years old from year seven, and were called secondary level learners, and they were all in intermediate level of formal English proficiency. Students at this international school undergo the Oxford Online Exam as a placement test, enabling officials to assess their English proficiency.

2.3 Research Procedures
This study was carried out from March to July 2019. The treatment lasted ten weeks, with each session taking about one teaching hour. This programme had two intact classes assigned to one experimental and one control group. The students in the control group had the same amount of teaching time; however, they were not given any explicit FFI, while the experimental group had explicit FFI. The pretest, posttest, and delayed posttest for both groups were the same. The explicit class received explicit FFI, with the instructor providing metalinguistic information (repeating the student’s fault before providing the grammar rule) and a metalinguistic explanation of the target language feature (the teacher taught the grammatical rule of the target feature explicitly). Next, the posttest was given after ten teaching weeks, and the delayed posttest was given two weeks after the posttest to both groups. The researcher worked as the instructor in charge of the lessons and administered the pretest, posttest, and delayed posttest in a classroom setting. To check the interface between implicit and explicit knowledge of learners, tests to assess both implicit and explicit knowledge were applied to assess the effect of explicit and implicit knowledge on each other and to measure whether explicit knowledge can change to implicit knowledge. As a result, four assessments were selected (two to assess implicit knowledge and two to assess explicit knowledge). Furthermore, the students were told that the assessments were used for educational purposes only and that they were not part of their school curriculum. They also did not know whether the instruction was explicit or implicit FFI. Table 2 shows the comparison between groups.
Table 1: Comparison between groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Teaching time</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td>One hour per week</td>
<td>Pre, post, delayed posttest</td>
</tr>
<tr>
<td>Experimental</td>
<td>Explicit FFI</td>
<td>One hour per week</td>
<td>Pre, post, delayed posttest</td>
</tr>
</tbody>
</table>

Two tests were developed from Ellis et al. (2009) to assess explicit knowledge. The Untimed Grammaticality Judgment Test (UGJT) was the first, and the Metalinguistic Knowledge Test (MKT) was the second. Untimed Grammaticality Judgment Test (UGJT) and the Timed Grammaticality Judgment Test (TGJT), which measured the implicit knowledge of students, had the same items, in a different order. Students were instructed to study the sentences to determine whether or not they were grammatical; there was no time limit, so pupils were not under any time constraints.

There were no time limits on the metalinguistic knowledge test (MKT), and it was divided into two parts. The first section presented 12 ungrammatical sentences aimed at the specific target structure. Each sentence's linguistic error was highlighted, and participants were encouraged to choose the rule that best represented each error from four options. In the second part, participants were given 12 sentences, each with a grammatical structure indicated by a bracket before it. Learners had to locate the item, as well as the grammatical structure of each bracket, in the provided sentence and highlight it. This test was developed by Alderson, Clapham, and Steel (1997), and it was used by Ellis et al. (2009).

The design of two implicit knowledge tests was adapted from Ellis et al. (2009) in evaluating the students' implicit knowledge as the study's output; consent to use the assessments was obtained. The test items were created by the researcher because they concentrated on the passive form with modal which had not been researched before. The Elicited Oral Imitation Test (EOIT) was conducted before the Timed Grammatical Judgment Test (TGJT). The students completed these assessments as pretest, posttest, and delayed posttest. Other than the order of items in each test, the pretest, posttest, and delayed posttest were all identical.

The target form was included in 24 sentences in EOIT. The items were grammatically correct in half and wrong in the other half. The students were asked to listen to the items one by one and to state whether they agreed or disagreed with the sentences to draw their focus to the meaning of the test items. The students were then required to retell the statements in proper
grammatical form. They were supposed to listen to the statements just once. All of their responses were documented for later review. Each correct response received one point, while each incorrect response received zero. Learners must have generated the correct form of the target structure in their reports when retelling the sentences, or they would receive a score of zero. In addition, the students were not required to monitor themselves for clarification or repeat the statements; otherwise, they were given a score of zero.

Students were asked to determine whether or not a sentence was grammatical within a time limit during the Timed Grammatical Judgment Test (TGJT). This test, which looked at passive voice with modals as the target structure, had 24 statements separated into 12 ungrammatical and 12 grammatical items containing the target structure. The items were not the same as those in EOIT, but they had the same structure. Learners were required to read the statements and determine whether or not they were grammatically correct by selecting the correct answer within a time limit determined by a pilot study.

Three native English speakers from an international school in Malaysia participated in a session to determine the time limit for each item on the TGJT. Those three Native speakers measured the time for each item based on the average response time for each item. To account for ESL students' slower processing speeds, particularly at the intermediate level, 20% of the time required for each item was applied to the same item, with a time limit ranging from 3 to 9 seconds. Furthermore, to avoid guessing, students were required to highlight the target form in each given item; otherwise, they were given a score of zero.

2.4 Treatment

Two intact groups (each group consisted of 15 students) were included in this study. The students in the control group were not offered explicit FFI and students did not receive any explicit form of feedback to correct their errors. They were just asked to read the reading texts to answer the comprehension questions and when they were using the provided prompts, which included the target structure, to produce their own prompt, their errors were not corrected by the teacher. On the other hand, the experimental group received explicit FFI, which was used as a language teaching method. The basis of teaching in explicit learning is noticing the desired feature, and in implicit learning, noticing the target form in the input is also important, but implementing them
implicitly relies on a simple human mechanism that automatically recognises desired patterns and results in an unconscious form of knowledge (Schmidt, 2012).

This study’s lessons were divided into ten sessions, each lasting about an hour per week. The explicit class received explicit FFI by providing metalinguistic knowledge (the instructor reproduced the student’s mistake before presenting the linguistic rule) and a metalinguistic description of the target structure (the instructor, explicitly defined the passive form using modal). The experimental group was taught English passive voice using modals, and their implicit knowledge was evaluated as part of the study’s result. The same pretest, posttest, and delayed posttest, to check whether students could retain the acquired knowledge, were provided to both classes.

The passive voice using modal verbs (can, might, could, should, have to, must+ be+ past participle) was the target structure for the treatment class. The rationale behind the selection of this grammatical structure was due to two reasons. First, the respondents had still not received it in their curriculum by the time this study was conducted. Second, the researcher had noticed students having difficulty using this grammatical form correctly.

Each modal verb in this structure (modal+ be+ past participle) has a different application and to teach students how to apply these applications (possibility or ability; advisability; necessity) each was taught separately. These applications were adopted from the Summit1 textbook (Saslow & Ascher, 2006). The modals and the applications are presented in Table 1.

<table>
<thead>
<tr>
<th>Modals</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can, could, might</td>
<td>Possibility, ability</td>
</tr>
<tr>
<td>Should</td>
<td>Advisability</td>
</tr>
<tr>
<td>Have to, must</td>
<td>Necessity</td>
</tr>
</tbody>
</table>

2.5 Pilot Study
Pilot research was performed before the main study to determine the time limit as well as the validity and reliability of the tests.

To determine the instrument time limit, 16 students of the same skill level, intermediate, were evaluated on the test items. The number of samples for the pilot study was determined by the school's availability of intermediate level. The students’ response times to TGJT items were
averaged, and 20 percent was applied to the average time to account for the slow processing students (Ellis, 2005, as cited in Kamiya, 2015).

2.6 Validity
Two measures were taken to determine the content validity of the tests, to figure out whether they were valid or not. First, the produced tests were reviewed by three teachers from the English department of an international school where the researcher conducted the research. Second, before extending the test to the entire sample of the study, the questionnaires were given to a pilot group of people with similar proficiency levels.

Construct validity was also performed to see whether the test items proposed the knowledge which was being tested by the current study. As a result, a Principal Component Analysis (SPSS) was used to check if the tests accurately calculated the proposed form of knowledge in this research. Before performing SPSS, the bivariate correlation matrix was analysed to verify the range of values for determining the between-item correlation.

2.7 Reliability
Cronbach’s alpha was determined for all four tests to evaluate reliability. The timed grammaticality judgment test (TGJS) and the elicited oral imitation test (EOIT) were used to assess the students’ implicit knowledge, and they were given a time limit to complete these tests. There were 48 items in the tests. The students were given an untimed grammaticality judgment test (UGJT) and a metalinguistic knowledge test (MKT) to assess their explicit knowledge. These tests of explicit knowledge had no time limit. There were 48 items in these tests as well. The Inter-Item Correlation Matrix was also tested. The Inter-Item Correlation Matrix is tested for negative values to check if the test items add to the accuracy of gained results (Pallant, 2016).

3.0 DATA ANALYSIS AND FINDING
The objective of this research was to determine the impact of explicit FFI on ESL learners' implicit knowledge by offering meta-linguistic presentation and explicit form correction. The collected data was examined using SPSS version 21. Following Pallant (2020), random checks were conducted on the results of data analysis after keying in the data into the SPSS to enable accurate analysis techniques.
To ensure homogeneity among the respondents and address differences between two classes, the author first performed preliminary assumption testing with parametric test. After the measures of normality, linearity, homogeneity of regression slopes, and equality of variance, ANCOVA was also used four times: first, on the findings of both groups' implicit tests, utilizing pretest outcomes as covariate and posttest outcomes as the dependent variable; second, on the data of both groups' explicit tests, including pretest findings as covariate and posttest findings as the dependent variable; third, on the outcomes of both groups' implicit tests, utilizing posttest results as covariate and delayed posttest findings as the dependent variable; fourth, on the outcomes of both groups' explicit tests, utilizing posttest results as covariate and delayed posttest outcomes as the dependent variable. Furthermore, the Bonferroni test was used to determine if both groups had significant differences in implicit and explicit knowledge.

To determine the impact of explicit FFI on the implicit knowledge of the selected samples considering the weak interface theory, the author of the research had to collect data on the explicit knowledge of both groups as well to determine the interface between both knowledge (explicit and implicit) of learners and he analysed the collected data for both explicit and implicit knowledge of both groups' posttest and delayed posttest.

When calculating implicit knowledge, the researcher used a combined measure for EIOT and TGJT, as well as ANCOVA and Post Hoc Bonferroni measurements. Moreover, the students’ outcomes for three applications of the target form (Possibility and ability; Advisability; necessity) were measured separately to provide a more precise interpretation of the outcomes.

The modified and unadjusted means for the control and explicit groups are shown in Table 3. This Table also displays the mean and standard deviations of implicit knowledge pre and post controlling for the pretest. The explicit class (M = 34.933, SD = 4.847) graded higher than participants in control group (M = 32.267, SD = 4.367).

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Unadjusted M</th>
<th>Unadjusted SD</th>
<th>Adjusted M</th>
<th>Adjusted SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>15</td>
<td>32.267</td>
<td>4.367</td>
<td>31.88</td>
<td>1.106</td>
</tr>
<tr>
<td>Explicit</td>
<td>15</td>
<td>34.933</td>
<td>4.847</td>
<td>35.501</td>
<td>1.113</td>
</tr>
</tbody>
</table>
The modified and unadjusted means of the implicit delayed posttest for both groups are shown in Table 4.

Table 4: Implicit delayed posttest total scores, Covariate: Implicit posttest total mean scores

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th></th>
<th>M</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>15</td>
<td>33.467</td>
<td>4.969</td>
<td></td>
<td>34.958</td>
<td>0.977</td>
</tr>
<tr>
<td>Explicit</td>
<td>15</td>
<td>37.533</td>
<td>4.307</td>
<td></td>
<td>37.368</td>
<td>0.936</td>
</tr>
</tbody>
</table>

Referring to Table 3, the respondents in the explicit group (M = 37.533, SD = 4.307) performed better on the implicit delayed posttest than did the respondents in the control group (M = 33.467, SD = 4.969).

The significance of the difference in the means of the explicit and control groups was determined using pairwise analysis (Post Hoc Bonferroni). The results of the Bonferroni test are shown in Table 5.

Table 5: Mean difference of both groups; Dependent variable: Implicit posttest total mean scores

<table>
<thead>
<tr>
<th>Mean differences</th>
<th>Control (A)</th>
<th>Implicit FFI (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (A)</td>
<td>-----------</td>
<td>-3.621*</td>
</tr>
<tr>
<td>Explicit FFI (B)</td>
<td>-----------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

The mean difference for explicit FFI group and control group (=3.621) is not significant at the p<0.05, as seen in Table 4. As a result, the pairwise comparison was not applied.

Referring to the above analysis, the respondents in the explicit FFI group outperformed learners in the control group; however, explicit FFI did not have a significant effect on implicit posttest knowledge of the learners. The same type of results was calculated on the implicit delayed posttest knowledge, and the participants in the explicit FFI group outperformed students in the control group, but explicit FFI did not have a significant effect on implicit delayed posttest knowledge of the learners.

In addition, to measure a more precise interpretation of the outcomes, the results for three applications (Possibility and ability; Advisability; necessity) of the study’s target form were
measured separately and the results showed that the respondents in the explicit FFI group outperformed the respondents in the control group in terms of the first application (ability and possibility) of the study's target grammatical structure (passive of modal verbs: might, could, and can). Nevertheless, the explicit FFI of those modal verbs did not have a significant impact on the respondents' implicit knowledge.

The second application of the study’s target grammatical structure was advisability, using the modal verb should. Considering the effect of this application on the students’ posttest implicit knowledge, participants in the explicit FFI class had a better performance than participants in the control group; however, similar to the first application, the second application did not have a significant impact on explicit FFI participants' implicit knowledge.

Similar to the first two applications, the impact of the third and the last application of the target structure, necessity (passive of modal verbs: must and have to) on implicit knowledge of the participants in explicit FFI class was not significant despite outperforming the control group.

To examine explicit knowledge, the researcher calculated a combined measure for MKT and UGJT. ANCOVA and Post Hoc Bonferroni measurements were also used. Furthermore, the students' findings were evaluated independently in three distinct applications as it was applied to implicit knowledge.

Table 6 shows the modified and unadjusted means for the explicit and control classes. The mean and standard deviations of explicit knowledge before and post controlling for pretest are also shown in this table. Participants in the explicit class (M =35.267, SD = 5.405) achieved better grades than those in the control group (M = 31.533, SD = 5.986).

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>M</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>15</td>
<td>31.533</td>
<td>5.986</td>
<td>31.255</td>
<td>1.336</td>
</tr>
<tr>
<td>Explicit</td>
<td>15</td>
<td>35.267</td>
<td>5.405</td>
<td>36.260</td>
<td>1.356</td>
</tr>
</tbody>
</table>

The modified and unadjusted means of the implicit delayed posttest for both groups are shown in Table 7.
Table 7: Explicit delayed posttest total scores, Covariate: Explicit posttest total mean scores

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>Unadjusted</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>15</td>
<td>20.133</td>
<td>4.549</td>
<td>21.463</td>
<td>1.109</td>
</tr>
<tr>
<td>Explicit</td>
<td>15</td>
<td>25.6</td>
<td>4.356</td>
<td>25.420</td>
<td>1.055</td>
</tr>
</tbody>
</table>

Results in table 7 indicate that students in the explicit group (M = 25.6, SD = 4.356) performed better on the explicit delayed posttest than participants in the control class (M = 20.133, SD = 4.549).

The pairwise comparison was considered to determine if there was a significant difference in the means of the control and explicit classes. The Bonferroni test looks at pairwise comparisons between classes. SPSS 21 had been used to perform the Bonferroni test. The results of this comparison are shown in Table 8.

Table 8: Means difference of both groups; Dependent variable: Explicit posttest total mean scores

<table>
<thead>
<tr>
<th>Mean differences</th>
<th>Control (A)</th>
<th>Explicit FFI(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (A)</td>
<td></td>
<td>-5.005*</td>
</tr>
<tr>
<td>Explicit FFI(C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The difference between explicit FFI and control group (=5.005*) is significant at the p<0.05, as seen in Table 8. Table 9 shows the results of the explicit delayed posttest Bonferroni test for both classes.

Table 9: Means difference of both groups; Dependent variable: Explicit posttest total mean scores

<table>
<thead>
<tr>
<th>Mean differences</th>
<th>Control (A)</th>
<th>Explicit FFI(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (A)</td>
<td></td>
<td>-3.958*</td>
</tr>
<tr>
<td>Explicit FFI(C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The observed difference between explicit FFI and control classes (=3.958) is significant at the p<0.05, as seen in Table 9.

It can be concluded that: considering explicit knowledge, students in the explicit FFI class scored significantly higher than participants in the control group, indicating that explicit FFI had a significant impact on learners' explicit knowledge. Moreover, considering the explicit delayed posttest knowledge, students in the explicit FFI class scored significantly higher than participants in the control group, indicating that explicit FFI had a major impact on learners’ explicit knowledge after completing the explicit delayed posttest.

Furthermore, the findings for three applications of the research target structure (Possibility & ability; Advisability; necessity) were calculated separately to assess a more precise evaluation of the outcomes, and the following results were met:

Participants in the explicit FFI group had a better performance than participants in the control group when it came to the first application (ability, and possibility) of the study's target grammatical structure (passive of modal verbs: could, might, and can) on explicit posttest knowledge; however, explicit FFI of all those modal verbs had no significant effect on participants' implicit knowledge.

Advisability (passive of modal verb: could) was the study’s second application of the target grammatical structure. In terms of the effect of this application on students' posttest explicit knowledge, the explicit FFI class performed better than the control class; however, identical to the first application, the second application had no major impact on the explicit knowledge of explicit FFI participants.

On the contrary, the third and final implementation of the target structure, necessity (passive of modal verbs: must and have to), was the only application among the three applications of the current study that had a significant effect on the participants' explicit knowledge.

The results of this study showed that learners in the explicit FFI group outperformed the control group on explicit (UGJT & MKT) tests. However, the impact of explicit FFI was only noticeable on explicit knowledge and not on implicit knowledge of learners. This finding indicated that explicit FFI had a major effect on ESL learners' explicit knowledge. While students in the explicit FFI group scored higher than students in the control group in the independent analysis of the three applications of the target structure (possibility and ability; advisability; necessity), the
explicit FFI did not impact the implicit knowledge of learners significantly when it came down to the target structure of this research.

Suzuki and DeKeyser (2017) claim that to remove doubts in this field, proper tests of implicit and explicit knowledge are needed. According to Schenck (2018), the conflicting results between the implicit and explicit teaching methods create uncertainty over the use of instructional methods designed to advance grammar acquisition. To help clear uncertainty in this field, the current study used four different measures, two to test implicit knowledge and two to test explicit knowledge. According to Nemati, Hu, and Reed (2018) further research is needed to confirm the instruments. As a consequence, prior experiments must be carefully assessed and compared to the current study.

The findings of this study have indicated that when explicit FFI, which in this context refers to metalinguistic information and metalinguistic explanation of the grammatical form, is used learners’ implicit knowledge does not enhance, implying that explicit FFI is not the most efficient and reliable tool for improving students’ implicit knowledge.

Moreover, the collected data could not support the weak interface theory on the interface between students’ implicit and explicit knowledge. According to VanPatten (2016), explicit teaching approaches have almost no impact on mastering implicit information. The findings of this study showed that explicit FFI (metalinguistic presentation and explicit form correction) has a major impact only on explicit knowledge, not implicit knowledge, contradicting the weak interface position. This finding does not support the possibility of explicit knowledge changing to implicit knowledge. Explicit knowledge will not change or help the progress of implicit knowledge (VanPatten, 2016).

4.0 CONCLUSION

Theoretically, this study suggests If the taught structure is more difficult than the students’ existing production level, the effect of Explicit FFI on the implicit knowledge will be insignificant. Teachers need to be aware that applying explicit FFI on some grammatical forms is more effective than others. As a result, they need to consider that the difficulty level of a language feature influences the effectiveness of explicit FFI. Also, it suggests that Explicit FFI in form of metalinguistic information and metalinguistic explanation of the target form enhance the explicit knowledge of the students; however, it does not improve learners’ implicit knowledge of the grammatical structure: passive form with modals. The pedagogical implication of this study’s
findings helps curriculum designers, teachers and policymakers to choose appropriate methods and teaching techniques while targeting explicit or implicit knowledge of learners. Methodologically, the implication of this study’s results rejects Ellis’s (2008) weak interface viewpoint which supports the transformation of explicit knowledge to implicit knowledge when students are developmentally ready. In the current study, the learners had previously learned and developed implicit knowledge of modal verbs and passive form, but they were unable to develop the implicit knowledge of this study’s target grammatical form which was passive form with modals. Despite the findings, the limitations of this research should be acknowledged. The subjects in this study were Malaysian and selected from an International School. As a result, the generalizability of the findings to other academic settings and students should not be considered. A further experiment in a different environment with students of different ages is expected to yield a different outcome. The comparative results of subsequent research can provide more relevant data to add more specific information in this area of study. Moreover, further research with other techniques of explicit FFI which were not applied in the current study could result in a better understanding of the transformation of explicit knowledge to implicit knowledge.

REFERENCES


