# EVALUATION OF A TEST MEASURING MATHEMATICAL MODELLING COMPETENCY FOR INDONESIAN COLLEGE STUDENTS

### Abstract

**Background and Purpose: **Mathematical modelling competency is one of the vital characteristics in mathematics education. Educational researchers have updated the benefit of modelling as key factor to the study of complexity and modern science. Since many scholars frequently adopt instrument from one cultural background to another, they also offer proof on the issue of validity and reliability. The present paper aimed at validating a mathematical modelling test for secondary prospective mathematics teachers.

**Methodology: **We utilized a survey approach to examine the factor structure of mathematical modelling test for 202 secondary prospective mathematics teachers, selected by cluster random sampling. Mathematical modeling test was adapted to measure the desired constructs. More importantly, we used exploratory factor analysis (EFA), confirmatory factor analysis (CFA) using AMOS 18 and Rasch measurement model with Winstep version 3.73 to analyze the data.

**Findings:** The EFA and CFA technique verified that a mathematical modelling test was acceptable for Indonesian prospective mathematics teachers. In addition, Rasch analysis also confirmed that all items fit the criteria well and implied that all items are valid in measuring student mathematical modelling competency. This finding concludes that the mathematical modelling test of Indonesian prospective mathematics teachers have an eight-dimension structure.

**Contributions: **This present research contributes towards psychometric measure on the reliability and validity of a mathematical modelling test in mathematics education programs.

**Keywords:** Confirmatory factor analysis, mathematical modelling competency, Rasch measurement model.

**Cite as:** Hidayat, R., Qudratuddarsi, H., Mazlan, N. H., & Mohd Zeki, M. Z. (2021). Evaluation of a test measuring mathematical modelling competency for Indonesian college students. *Journal of Nusantara Studies, 6*(2), 133-155. http://dx.doi.org/10.24200/jonus.vol6iss2pp133-155

### References

Albarracín, L. (2020). Large number estimation as a vehicle to promote mathematical modeling. Early Childhood Education Journal, 1(1), 1-11.

Awang, Z. (2012). Structural equation modeling using AMOS graphic. UiTM Press.

Bakar, M. A. A., & Ismail, N. (2020). Express students' problem solving skills from metacognitive skills perspective on effective mathematics learning. Universal Journal of Educational Research, 8(4), 1404-1412.

Blomhøj, M. (2011). Modelling competency: Teaching, learning and assessing competencies – Overview. In G. Kaiser, W. Blum, R. B. Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling ICTMA 14 (Vol. 1, pp. 343–

347). Springer.

Blomhøj, M., & Jensen, T. H. (2007). What’s all the fuss about competencies? In W. Blum, H.-W. Henn, P. L. Galbraith, & M. Niss (Eds.), Modelling and applications in Mathematics education: The 14th ICMI Study (pp. 45–56). Springer.

Blomhøj, M., & Kjeldsen, T. H. (2013). Students’ mathematical learning in modelling activities. In G. A. Stillman, W. Blum, G. Kaiser, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 141–151). Springer.

Blomhøj, M., & Kjeldsen, T. H. (2006). Teaching mathematical modelling through project work. ZDM Mathematics Education, 38(2), 385–395.

Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 15–29). Springer.

Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (2007). Modelling and applications in mathematics education: The 14 ICMI study. Springer.

Bond, T., & Fox, C. M. (2015). Applying the Rasch model fundamental measurement in the human sciences (3rd ed.). Routledge.

Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. Springer.

Chan, S. W., Ismail, Z., & Sumintono, B. (2015). The impact of statistical reasoning learning environment: A Rasch analysis. Advanced Science Letters, 21(5), 1211–1215.

Cheng, A. K. (2013). Real-life modelling within a traditional curriculum: Lessons from a Singapore experience. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice.

International perspectives on the teaching and learning of mathematical modelling (pp. 131–140). Springer.

Chinnappan, M., & Thomas, M. (2003). Teachers function schemas and their role in modelling. Mathematics Education Research Journal, 15(2), 151–170.

Chua, Y. P. (2014). Ujian regresi, analisis faktor, dan analisis SEM. McGraw- Hill Education.

Cohen, L., Manion, L., & Morrison, K. (2005). Research methods in education. RoutledgeFalmer.

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Pearson.

DeVellis, R. F. (2012). Scale development: Theory and applications. Sage.

Edelen, M. O., & Reeve, B. B. (2007). Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Quality of Life Research, 16(1S), 5–18.

Fitzgerald, S. M., Rumrill, P. D., & Schenker, J. D. (2004). Perspectives on scientific inquiry causal-comparative research designs. Journal of Vocational Rehabilitation, 20(1), 143–150.

Fraenkel, J. R., & Wallen, N. E. (2009). How to design and evaluate research in education. McGraw-Hill.

Frejd, P. (2013). Modes of modelling assessment-a literature review. Educational Studies in Mathematics, 84(3), 413–438.

Frejd, P., & Ärlebäck, J. B. (2011). First results from a study investigating Swedish upper secondary students’ mathematical modelling competencies. In G. Kaiser, W. Blum, R. Borromeo, & G. Stillman (Eds.), Trends in teaching and learning of

mathematical modelling: International perspectives on the teaching and learning of mathematical modelling (Vol. 1, pp. 407–416). Springer.

Han, S., & Kim, H. M. (2020). Components of mathematical problem solving competence and mediation effects of instructional strategies for mathematical modeling. Education & Science/Egitim ve Bilim, 45(202), 93-111.

Hankeln, C. (2020). Mathematical modeling in Germany and France: A comparison of students’ modeling processes. Educational Studies in Mathematics, 103(2), 209-229.

Hankeln, C., Adamek, C., & Greefrath, G. (2019). Assessing sub-competencies of mathematical modelling-development of a new test instrument. In G. Stillman & J. Brown (Eds.), Lines of inquiry in mathematical modelling research in education (pp.

143-160). Springer.

Haines, C. (2011). Trends in teaching and learning of mathematical modelling. In G. Kaiser, W. Blum, R. Borromeo, & G. Stillman (Eds.), International perspectives on the teaching and learning of mathematical modelling (Vol. 1, pp. 349–365).

Springer.

Haines, C., & Crouch, R. (2001). Recognizing constructs within mathematical modelling. Teaching Mathematics and Its Applications, 20(3), 129–138.

Haines, C., & Crouch, R. (2005). Applying mathematics: Making multiple-choice questions work. Teaching Mathematics and Its Applications, 24(2-3), 107-113.

Haines, C., & Crouch, R. (2010). Remarks on a modeling cycle and interpreting behaviours. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies: ICTMA 13 (pp. 145–154). Springer.

Haines, C., Crouch, R., & Davis, J. (2000). Mathematical modeling skills: A research instrument. https://www.researchgate.net/publication/310504036_Mathematical_Modeling_Skills_A_Research_Instrument/link/58307a9b08ae138f1c05e859/download

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Prentice Hall.

Hidayat, R., Zamri, S. N. A. S., Zulnaidi, H., & Yuanita, P. (2020). Meta-cognitive behaviour and mathematical modelling competency: Mediating effect of performance goals. Heliyon, 6(4), e03800.

Ikeda, T., Stephens, M., & Matsuzaki, A. (2007). A teaching experiment in mathematical modelling. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling ICTMA 12: Education, engineering and economics (pp. 101–109).

Horwood.

Ishak, A. H., Osman, M. R., Mahaiyadin, M. H., Tumiran, M. A., & Anas, N. (2018). Examining unidimensionality of psychometric properties via Rasch model. International Journal of Civil Engineering and Technology, 9(9), 1462–1467.

Izard, J., Haines, C., Crouch, R., Houston, K., & Neill, N. (2003). Assessing the impact of teachings mathematical modeling: Some implications. In S. J. Lamon, W. A. Parker, & S. K. Houston (Eds.), Mathematical modelling: A way of life ICTMA 11 (pp.

165–177). Horwood.

Jupri, A., & Drijvers, P. (2016). Student difficulties in mathematizing word problems in Algebra. Eurasia Journal of Mathematics, Science & Technology Education, 12(9), 2481–2502.

Kandemir, M. A., & Karadeniz, I. (2021). Pre-service teachers’ cognitive and metacognitive processes in integrated STEM modeling activity. Journal of Education in Science, Environment and Health, 7(2), 104-127.

Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling ICTMA 12: Education, engineering and economics (pp. 110–119). Horwood.

Kartal, O., Dunya, B. A., Diefes-Dux, A., & Zawojewski, S. (2016). The relationship between students’ performance on conventional standardized mathematics assessments and complex mathematical modeling problems. International Journal of

Research in Education and Science (IJRES), 2(1), 239–252.

Krawec, J. L. (2014). Problem representation and mathematical problem solving of students of varying math ability. Journal of Learning Disabilities, 47(2), 103–115.

Kushman, N., Artzi, Y., Zettlemoyer, L., & Barzilay, R. (2014). Learning to automatically solve algebra word problems. In 52nd Annual Meeting of the Association for Computational Linguistics (pp. 271-281). Association for Computational Linguistics.

Lingefjärd, T., & Holmquist, M. (2005). To assess students’ attitudes, skills and competencies in mathematical modeling. Teaching Mathematics and Its Applications, 24(2–3), 123–133.

Liu, O. L., Lee, H., Linn, M. C., & Liu, O. L. (2011). An investigation of explanation multiple-choice items in science assessment. Educational Assessment, 16(3), 164–184.

Maaß, K. (2006). What are modelling competencies? International Journal on Mathematics Education, 38(2), 113–142.

Maaß, K., & Mischo, C. (2011). Implementing modelling into day-to-day teaching practice: The project STRATUM and its framework. Journal für Mathematik-Didaktik, 32(1), 103–131.

Murata, A., & Kattubadi, S. (2012). Grade 3 students’ mathematization through modeling: Situation models and solution models with mutli-digit subtraction problem solving. Journal of Mathematical Behavior, 31(1), 15–28.

Niss, M. (2015). Mathematical competencies and PISA. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy (pp. 35–56). Springer.

Nuryadi, A. (2021). Solution plan as a strategy to support students in modeling mathematics. Journal of Physics: Conference Series, 1806(2021), 1-7.

Pollak, H. O. (2011). What is mathematical modeling? Journal of Mathematics Education at Teachers College, 2(1), 64-65.

Riyanto, B., Putri, R. I. I., & Darmawijoyo. (2017). Mathematical modeling in realistic mathematics education. Journal of Physics: Conference Series, 943(1), 1-7.

Schumacker, R. E., & Lomax, R. G. (2010). Structural equation modeling (3rd ed.). Taylor & Francis.

Shahbari, J. A., & Tabach, M. (2020). Features of modeling processes that elicit mathematical models represented at different semiotic registers. Educational Studies in Mathematics, 105(2), 115-135.

Stillman, G. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, R. B. Ferri, W. Blum, & G. Stillman (Eds.), International perspectives on the teaching and learning of

mathematical modelling (Vol. 1, pp. 172–187). Springer.

Stillman, G., Galbraith, P., Brown, J., & Edwards, I. (2007). A framework for success in implementing mathematical modelling in the secondary classroom. In J. Watson & K. Beswick (Eds.), Proceedings of the 30th Annual Conference of the

Mathematics Education Research Group of Australasia (Vol. 2, pp. 688–697). MERGA.

Sumintono, B., & Widhiarso, W. (2015). Aplikasi pemodelan Rasch pada assessmen pendidikan. Trim Komunikata.

Widjaja, W. (2013). Building awareness of mathematical modelling in teacher education: A case study in Indonesia. In G. A. Stillman, W. Blum, G. Kaiser, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp.

583–593). Springer.

Yew, W. T., & Akmar, S. N. (2016). Problem solving strategies of selected pre-service secondary school mathematics teachers in Malaysia. The Malaysian Online Journal of Educational Sciences, 4(2), 17–31.

Zöttl, L., Ufer, S., & Reiss, K. (2011). Assessing modelling competencies using a multidimensional IRT approach. In G. Kaiser, W. Blum, R. B. Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling ICTMA 14 (Vol. 1, pp.

427-437). Springer.

*Journal of Nusantara Studies (JONUS)*,

*6*(2), 133-155. https://doi.org/10.24200/jonus.vol6iss2pp133-155