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Abstract 
 

This paper proposes new Bayesian estimators of the population proportion of a sensitive attribute 
when life data were collected through the administration of questionnaires on abortion on 300 matured 
women in some selected hospitals in Akure, Ondo State, Nigeria. Assuming both the Kumaraswamy 
(KUMA) and the generalised (GLS) beta distributions as alternative beta priors, efficiency of the 
proposed Bayesian estimators was established for a wide interval of the values of the population 
proportion (π). We observed that for small, medium as well as large sample sizes, the developed 
Bayesian estimators were better in capturing responses from respondents than the conventional 
simple beta estimator proposed by Hussain and Shabbir (2009a) as π approaches one. 

 
Keywords: Alternative beta priors; sensitive attribute; mean square error; absolute bias; efficiency. 

 
 
Introduction 
 
Direct questioning about a sensitive attribute such as induced abortion, use of drug, tax 
evasion, etc. in a human population survey is a strenuous exercise. A survey statistician may 
receive wrong responses from the survey respondents when he/she uses direct questioning 
technique. Due to many reasons, information about incidence of sensitive attributes in the 
population becomes essential. Warner (1965) was the first to put forward a method of survey 
to collect information in relation to sensitive attributes by ensuring privacy and anonymity to 
the respondents. To date, numerous developments and improvements on Warner’s 
Randomized Response Technique have been developed by many researchers. Greenberg 
et al. (1969), Mangat and Singh (1990), Mangat (1994), Singh et al. (1998), Christofides 
(2003), Kim and Warde (2004), Adebola and Adepetun (2011), Adebola and Adepetun 
(2012), Adepetun and Adebola (2014) are some of the many to be cited. In some situations, 
prior information about the unknown parameter may be available and can be combined with 
the sample information for the estimation of that unknown parameter. This is known as the 
Bayesian approach of estimation. Work done by researchers on Bayesian analysis of 
Randomized response models are not very elaborate, however, attempts have been made 
on the Bayesian analysis of Randomized response techniques. Winkler and Franklin (1979), 
Pitz (1980), Spurrier and Padgett (1980), O’Hagan (1987), Oh (1994), Migon and Tachibana 
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(1997), Unnikrishnan and Kunte (1999), Bar-Lev and Bobovich (2003), Barabesi and 
Marcheselli (2006), Kim et al. (2006), Hussain and Shabbir (2009a, 2009b), Hussain and 
Shabbir (2012), Adepetun and Adewara (2014), are the major references on the Bayesian 
analysis of the Randomized Response Techniques. In this study, we propose new Bayesian 
estimators of the population proportion of respondents who possess ignoble attribute in a 
simple random sample of size n assuming different beta priors other than the conventional 
simple beta prior found in the literature..  
 
 
Materials and Methods 
 
In Bayesian Analysis, the prior information about the unknown parameter of the population is 
combined with the sample information for the determination of that unknown parameter. 
Notable authors like Winkler and Franklin (1979), O’Hagan (1987), Kim et al. (2006), Hussain 
and Shabbir (2012) etc. have provided Bayesian analysis to some randomized response 
techniques in the literature using simple beta prior.  

In this study, we presented both the conventional and the alternative beta priors for the 
randomized response technique.  Similarly, we assume numerical values for the parameters 
in the priors. In the case of simple beta prior, we assume a>1, b>1, a≠b, c=1. For 
Kumaraswamy prior, we assume a=1, b>1, c>1, b≠c. For the generalised beta prior, we 
assume a>1, b>1, c>1, a≠b≠c respectively. Consequently, the conventional simple beta 
estimator along with the proposed estimators assuming Kumaraswamy and the generalised 
beta priors were derived and computed from their respective posterior distributions using R 
statistical software respectively. 

The tables showing absolute bias, mean square errors and relative efficiencies were 
displayed for comparison. Consequently, graphs of the mean square errors, absolute bias of 
the estimators were plotted against assigned values of π in the range 0<π<1 using selected 
sample sizes 25,100, and 250 respectively. Life data obtained from administered survey 
questionnaires on induced abortion among 300 women in Akure, Ondo State were also used 
to establish the efficiency of the proposed estimators in capturing responses from 
respondents with respect to stigmatized attribute.. 
 
 
The Existing Bayesian Technique of Estimation 

 
Hussain and Shabbir (2009a) in their referred paper presented a Bayesian estimation to the 
Randomized Response Technique put forward by Hussain and Shabbir (2007) using a 
simple beta prior distribution to estimate the population proportion of respondents possessing 
sensitive attribute. 
 
Let the simple beta prior be defined as follows  
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where  ba,  are the shape parameters of the distribution and  is the population proportion 

of respondents possessing the sensitive attribute. 
 
Let  ixx  be the total number of the women who have committed abortion for a particular 

sample of size n selected from the population with simple random sampling with replacement 
sampling. Then the conditional distribution of X given  was    
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where   is the probability of “yes response” to the sensitive attribute which was defined as
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1P  is the predetermined probability of “yes” response to the sensitive attribute and 

 ,  are non-zero constants such that 121 PP   respectively. 
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On simplification, it led to  
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Thus, the joint probability density functions (pdf) of X and  was  
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Now the marginal distribution of X can be obtained by integrating the joint distribution of X 
and π with respect to  . Thus, the marginal distribution of X was given as 
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The posterior distribution of  given X was defined as    
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The Bayes estimator of π which is the posterior mean of (8) was given as 
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The Bias of SĤ  and its mean square error were given as       SHSH EB ˆˆ    (10) 
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The Proposed Bayesian Techniques of Estimation 
 
In this section, we develop alternative Bayesian estimators to Hussain and Shabbir (2009a) 
Randomized Response Technique using both the Kumaraswamy (KUMA) and the 
generalised (GLS) beta prior distributions as our alternative beta prior distributions in addition 
to the simple beta prior distribution used by Hussain and Shabbir (2009a). 
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Estimation of π Using Kumaraswamy Prior 

 

The Kumaraswamy prior distribution of   is given as     0,;1
11 
 cbbcf

bcc        (12) 

 
Using the Kumaraswamy prior in (12), the joint probability density function of X and   is 

derived as  
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The marginal probability density function (pdf) of X can be obtained as  
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Similarly, the posterior distribution as usual is obtained as follows    
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Under the Square error loss, we proceed to obtain the posterior mean which is the Bayes 

estimator as follows  
1
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As a result, the Bias of KĤ  as well as its mean square error is also given as 

      KHKH EB ˆˆ                    (19) 
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Estimation of π Using the Generalised Beta Prior 

 
The generalised beta prior is defined as  
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Where cba ,,  are the shape parameters of the prior distribution as given in equation (21) 

 
From binomial series expansion, we know that 
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As a result, the joint density function of 𝜋 and X with the generalized beta prior is  
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The marginal probability density function (pdf) of X can then be obtained from (22) as 

   
1

0

,  dXfXf                    (23) 

 

    


















 







 










x

i

xn

j

jxnix
b

k

k
jiakcHF

k

b

j

xn

i

x
G

0 0

1

0

1,
1

1              (24) 

 
 
 
 
 
 
 



Malaysian Journal of Applied Sciences 2017, Vol 2 (1): 48-67 

54 

Similarly, we obtained the posterior distribution of   given X as  
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In the same manner, under the square error loss, the posterior mean which is otherwise 
known as the Bayes estimator is given as 
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The Bias of GĤ  and its mean square error are respectively given as 

      GHGH EB ˆˆ              (27) 
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Remarks: Equation (9) is the conventional Bayesian estimator of the population proportion

   of the respondents who have committed the sensitive attribute proposed by Hussain and 

Shabbir (2009a) while equations (18) and (26) are the newly proposed Bayesian estimators 

of the population proportion   of the respondents who have committed the sensitive attribute 

(the sensitive attribute in this case is abortion). 
 
Relative Efficiency (RE) of the proposed estimator = MSE of the proposed estimator/MSE of 
the conventional estimator *100%. 
 
 
Application 
 
In this section, the proposed Bayesian estimators were applied to life data obtained from the 
administered survey questionnaires on induced abortion under the same values of 
parameters in the estimators using sample sizes 25, 100 and 250 respectively and compare 
the results with the conventional simple beta estimator proposed by Hussain and Shabbir 
(2009a). We overcame the associated computational problems by writing computer 
programs using available statistical software. Few results in tables and figures were 
presented to reduce spaces as follows: 
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Table 1. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007) 

RRT at 9.0,1.0,10,1,11,25 21  PPxn   

 
 

Table 2. Absolute Bias for Hussain and Shabbir (2007) RRT at  

9.0,1.0,10,1,11,25 21  PPxn   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Mean square errors for Hussain and Shabbir (2007) RRT at  

9.0,1.0,10,1,11,25 21  PPxn   
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MSE BETA MSE KUMA MSE GLS RE KUMA RE GLS 

0.1  4.225819E-10 1.017346E-08 1.607482E-08 2411.347500 3806.146600 

0.2 2.767500E-12 6.719137E-09 1.164096E-08 242599.2780 418772.5632 

0.3 2.968604E-10 3.978724E-09 7.921015E-09 1340.067300 2666.666700 

0.4 1.304861E-09 1.952218E-09 4.914973E-09 150.0000000 377.6923000 

0.5 3.026768E-09 6.396192E-10 2.622838E-09 21.12210000 86.46860000 

0.6 5.462583E-09 4.092771E-11 1.044610E-09 0.749100000 19.04760000 

0.7 8.612305E-09 1.561435E-10 1.802902E-10 1.811800000 2.090600000 

0.8 1.247593E-08 9.852666E-10 2.987716E-11 7.880000000 0.239200000 

0.9 1.705347E-08 2.528297E-09 5.933715E-10 14.79530000 3.467800000 

 

|BIAS|BETA |BIAS|KUMA |BIAS|GLS 

0.1 0.10880517 0.53386124 0.67106898 

0.2 0.00880517 0.43386124 0.57106898 

0.3 0.09119483 0.33386124 0.47106898 

0.4 0.19119483 0.23386124 0.37106898 

0.5 0.29119483 0.13386124 0.27106898 

0.6 0.39119483 0.03386124 0.17106898 

0.7 0.49119483 0.06613876 0.07106898 

0.8 0.59119483 0.16613876 0.02893102 

0.9 0.69119483 0.26613876 0.12893102 
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Figure 2. Absolute Bias for Hussain and Shabbir (2007) RRT at 

9.0,1.0,10,1,11,25 21  PPxn   

 
 

Comment: When ,1.0,25 1  Pn  the conventional simple beta estimator is better than the 

proposed estimators when   lies within the range 4.01.0    while the proposed 

estimators are better than the conventional estimator when 𝜋 lies within the range 14.0    

However, the proposed generalised beta estimator is the best in capturing responses from 
respondents when 𝜋 lies within the range 17.0    respectively. 

 
 

Table 3. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007) 

RRT at 8.0,1.0,10,1,11,25 21  PPxn   
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0.1 3.980527E-09 1.327131E-08 1.886529E-08 334.1709000 474.8744000 

0.2 1.953481E-09 9.275222E-09 1.403224E-08 475.8974000 717.9487000 

0.3 6.403423E-10 5.993041E-09 9.913099E-09 935.9375000 1548.437500 

0.4 4.111079E-11 3.424768E-09 6.507863E-09 8321.167900 15839.41610 

0.5 1.557865E-10 1.570402E-09 3.816535E-09 1006.410300 2448.717900 

0.6 9.843696E-10 4.299438E-10 1.839114E-09 43.69920000 186.9919000 

0.7 2.526860E-09 3.392482E-12 5.756007E-10 0.134000000 22.76680000 

0.8 4.783257E-09 2.907485E-10 2.599432E-11 6.087900000 0.543900000 

0.9 7.753562E-09 1.292012E-09 1.902953E-10 16.64520000 2.451600000 



Malaysian Journal of Applied Sciences 2017, Vol 2 (1): 48-67 

57 

Table 4. Absolute Bias for Hussain and Shabbir (2007) RRT at 

8.0,1.0,10,1,11,25 21  PPxn   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Mean square errors for Hussain and Shabbir (2007) RRT at 

8.0,1.0,10,1,11,25 21  PPxn   
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|BIAS|BETA |BIAS|KUMA |BIAS|GLS 

0.1 0.33393689 0.60974884 0.72698568 

0.2 0.23393689 0.50974884 0.62698568 

0.3 0.13393689 0.40974884 0.52698568 

0.4 0.03393689 0.30974884 0.42698568 

0.5 0.06606311 0.20974884 0.32698568 

0.6 0.16606311 0.10974884 0.22698568 

0.7 0.26606311 0.00974884 0.12698568 

0.8 0.36606311 0.09025116 0.02698568 

0.9 0.46606311 0.19025116 0.07301432 
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Figure 4. Absolute Bias for Hussain and Shabbir (2007) RRT at 

8.0,1.0,10,1,11,25 21  PPxn   

 
 

Comment: When 2.0,25 1  Pn , the conventional simple beta estimator is better than the 

proposed estimators when   lies within the range 6.01.0    while the proposed 

estimators are better than the conventional estimator when 𝜋 lies within the range 15.0   . 

However, the proposed generalised beta estimator is the best in capturing responses from 
respondents when 𝜋 lies within the range 17.0    respectively. 

 
 

Table 5. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007) 

RRT at 9.0,1.0,10,1,43,100 21  PPxn   
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MSE BETA MSE KUMA MSE GLS RE KUMA RE GLS 

0.1 7.321979E-33 6.766773E-34 5.777443E-33 924.8634000 78.96170000 

0.2 5.326008E-32 2.931831E-32 4.789110E-33 54.97190000 8.986900000 

0.3 1.413718E-31 1.001335E-31 4.597435E-32 70.92200000 32.62410000 

0.4 2.716570E-31 2.131223E-31 1.293332E-31 78.30880000 47.42650000 

0.5 4.441158E-31 3.682846E-31 2.548655E-31 82.88290000 57.43240000 

0.6 6.587482E-31 5.656206E-31 4.225715E-31 85.88770000 64.18820000 

0.7 9.155541E-31 8.051300E-31 6.324510E-31 87.88210000 68.99560000 

0.8 1.214534E-30 1.086813E-30 8.845041E-31 90.08260000 73.14050000 

0.9 1.555687E-30 1.410670E-30 1.178731E-30 90.38460000 75.64100000 
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Table 6. Absolute Bias for Hussain and Shabbir (2007) RRT at 

9.0,1.0,10,1,43,100 21  PPxn   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Mean square errors for Hussain and Shabbir (2007) RRT at 

9.0,1.0,10,1,43,100 21  PPxn   
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0.1 0.05892628 0.01791371 0.05234349 

0.2 0.15892628 0.11791371 0.04765651 

0.3 0.25892628 0.21791371 0.14765651 

0.4 0.35892628 0.31791371 0.24765651 

0.5 0.45892628 0.41791371 0.34765651 

0.6 0.55892628 0.51791371 0.44765651 

0.7 0.65892628 0.61791371 0.54765651 

0.8 0.75892628 0.71791371 0.64765651 

0.9 0.85892628 0.81791371 0.74765651 
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Figure 6. Absolute Bias for Hussain and Shabbir (2007) RRT at  

9.0,1.0,10,1,43,100 21  PPxn   

 
 

Comment: When ,1.0,100 1  Pn  the proposed estimators are better than the conventional 

simple beta estimator when   lies within the range 11.0   . However, the proposed 

generalised beta estimator is the best in capturing responses from respondents when 𝜋 lies 
within the range 11.0    respectively. 

 
 

Table 7. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007) 

RRT at 8.0,2.0,10,1,43,100 21  PPxn   
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MSE BETA MSE KUMA MSE GLS RE KUMA RE GLS 

0.1 2.791151E-31 4.914985E-31 6.731825E-31 175.9856631 241.2186380 

0.2 1.467660E-31 3.089766E-31 4.559816E-31 210.2040816 310.2040816 

0.3 5.659053E-32 1.686283E-31 2.809543E-31 298.5865724 496.4664311 

0.4 8.588608E-33 7.045355E-32 1.481005E-31 820.7217695 1722.933644 

0.5 2.760257E-33 1.445236E-32 5.742033E-32 525.3623188 2079.710145 

0.6 3.910548E-32 6.247455E-34 8.913720E-33 1.598465473 22.78772379 

0.7 1.176243E-31 2.897070E-32 2.580680E-33 24.57627119 2.186440678 

0.8 2.383166E-31 9.949022E-32 3.842121E-32 41.80672269 16.13445378 

0.9 4.011825E-31 2.121833E-31 1.164353E-31 52.86783042 28.92768080 
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Table 8. Absolute Bias for Hussain and Shabbir (2007) RRT at 

8.0,2.0,10,1,43,100 21  PPxn   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Mean square errors for Hussain and Shabbir (2007) RRT 

8.0,2.0,10,1,43,100 21  PPxn   
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|BIAS|BETA |BIAS|KUMA |BIAS|GLS 

0.1 0.36381991 0.48278740 0.56501661 

0.2 0.26381991 0.38278740 0.46501661 

0.3 0.16381991 0.28278740 0.36501661 

0.4 0.06381991 0.18278740 0.26501661 

0.5 0.03618009 0.08278740 0.16501661 

0.6 0.13618009 0.01721260 0.06501661 

0.7 0.23618009 0.11721260 0.03498339 

0.8 0.33618009 0.21721260 0.13498339 

0.9 0.43618009 0.31721260 0.23498339 
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Comment: When ,2.0,100 1  Pn  the conventional simple beta estimator is better than the 

proposed estimators when   lies within the range 6.01.0    while the proposed 

estimators are better than the conventional estimator when 𝜋 lies within the range 15.0   . 
However, the proposed generalised beta estimator is the best in capturing responses from 
respondents when 𝜋 lies within the range 16.0    respectively. 

 
 

Table 9. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007) 

RRT at 9.0,1.0,10,1,106,250 21  PPxn   

 
 

Table 10. Absolute Bias for Hussain and Shabbir (2007) RRT at 

9.0,1.0,10,1,106,250 21  PPxn   

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 MSE BETA MSE KUMA MSE GLS RE KUMA RE GLS 

0.1 6.762010E-77 4.132263E-77 9.538537E-78 61.09467456 14.11242604 

0.2 3.327631E-76 2.705011E-76 1.717961E-76 81.38138138 51.65165165 

0.3 7.986527E-76 7.004263E-76 5.348004E-76 87.60951189 66.95869837 

0.4 1.465289E-75 1.331098E-75 1.098551E-75 90.47619048 74.82993197 

0.5 2.332672E-75 2.162517E-75 1.863049E-75 92.70386266 79.82832618 

0.6 3.400802E-75 3.194682E-75 2.828293E-75 93.82352941 83.23529412 

0.7 4.669678E-75 4.427594E-75 3.994285E-75 94.86081370 85.43897216 

0.8 6.139301E-75 5.861253E-75 5.361022E-75 95.43973941 87.29641694 

0.9 7.809671E-75 7.495658E-75 6.928507E-75 96.03072983 88.73239437 

 |BIAS|BETA |BIAS|KUMA |BIAS|GLS 

0.1 0.08207837 0.06416302 0.03082703 

0.2 0.18207837 0.16416302 0.13082703 

0.3 0.28207837 0.26416302 0.23082703 

0.4 0.38207837 0.36416302 0.33082703 

0.5 0.48207837 0.46416302 0.43082703 

0.6 0.58207837 0.56416302 0.53082703 

0.7 0.68207837 0.66416302 0.63082703 

0.8 0.78207837 0.76416302 0.73082703 

0.9 0.88207837 0.86416302 0.83082703 
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Figure 9. Mean square errors for Hussain and Shabbir (2007) RRT at  

9.0,1.0,10,1,106,250 21  PPxn   

 
 

 
 

Figure 10. Absolute Bias for Hussain and Shabbir (2007) RRT at 

9.0,1.0,10,1,106,250 21  PPxn   

 
 

Comment: When ,1.0,250 1  Pn  the proposed estimators are better than the conventional 
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generalised beta estimator is the best in capturing responses from respondents when 𝜋 lies 

within the range 11.0    respectively. 
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Table 11. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007) RRT at 

8.0,2.0,10,1,106,250 21  PPxn   

 
 

Table 12. Absolute Bias for Hussain and Shabbir (2007) RRT at 

8.0,2.0,10,1,106,250 21  PPxn   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 11. Mean square errors for Hussain and Shabbir (2007) RRT at  

8.0,2.0,10,1,106,250 21  PPxn   

 MSE BETA MSE KUMA MSE GLS RE KUMA RE GLS 
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Figure 12. Absolute Bias for Hussain and Shabbir (2007) RRT at 

8.0,2.0,10,1,106,250 21  PPxn   

 

Comment: When ,2.0,250 1  Pn  the conventional simple beta estimator is better than the 

proposed estimators when   lies within the range 3.01.0    while the proposed 

estimators are better than the conventional estimator when 𝜋 lies within the range 12.0   .  
However, the proposed generalised beta estimator is the best in capturing higher responses 
from respondents when   lies within the range 15.0    respectively. 
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Conclusion 
 
We have developed the alternative Bayesian estimators of the population proportion of 
respondents with respect to stigmatized attribute when life data were gathered through the 
administration of questionnaires on abortion on 300 matured women in some selected 
hospitals in Akure, Ondo State assuming both Kumaraswamy (KUMA) and the generalised 
(GLS) beta priors as our alternative beta prior distributions in addition to simple beta prior 
distribution used by Hussain and Shabbir (2009a). We observed clearly from the results 
presented in tables and figures above, that for small, intermediate as well as large sample 
sizes, the proposed Bayesian estimators were more sensitive in capturing responses from 
respondents than that of Hussain and Shabbir (2009a). In particular, the proposed 
generalised beta estimator is the best in capturing information from respondents in survey 
which asks sensitive questions. 
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