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Abstract

This paper proposes new Bayesian estimators of the population proportion of a sensitive attribute
when life data were collected through the administration of questionnaires on abortion on 300 matured
women in some selected hospitals in Akure, Ondo State, Nigeria. Assuming both the Kumaraswamy
(KUMA) and the generalised (GLS) beta distributions as alternative beta priors, efficiency of the
proposed Bayesian estimators was established for a wide interval of the values of the population
proportion (11). We observed that for small, medium as well as large sample sizes, the developed
Bayesian estimators were better in capturing responses from respondents than the conventional
simple beta estimator proposed by Hussain and Shabbir (2009a) as 1T approaches one.

Keywords: Alternative beta priors; sensitive attribute; mean square error; absolute bias; efficiency.

Introduction

Direct questioning about a sensitive attribute such as induced abortion, use of drug, tax
evasion, etc. in a human population survey is a strenuous exercise. A survey statistician may
receive wrong responses from the survey respondents when he/she uses direct questioning
technique. Due to many reasons, information about incidence of sensitive attributes in the
population becomes essential. Warner (1965) was the first to put forward a method of survey
to collect information in relation to sensitive attributes by ensuring privacy and anonymity to
the respondents. To date, numerous developments and improvements on Warner's
Randomized Response Technique have been developed by many researchers. Greenberg
et al. (1969), Mangat and Singh (1990), Mangat (1994), Singh et al. (1998), Christofides
(2003), Kim and Warde (2004), Adebola and Adepetun (2011), Adebola and Adepetun
(2012), Adepetun and Adebola (2014) are some of the many to be cited. In some situations,
prior information about the unknown parameter may be available and can be combined with
the sample information for the estimation of that unknown parameter. This is known as the
Bayesian approach of estimation. Work done by researchers on Bayesian analysis of
Randomized response models are not very elaborate, however, attempts have been made
on the Bayesian analysis of Randomized response techniques. Winkler and Franklin (1979),
Pitz (1980), Spurrier and Padgett (1980), O’Hagan (1987), Oh (1994), Migon and Tachibana
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(1997), Unnikrishnan and Kunte (1999), Bar-Lev and Bobovich (2003), Barabesi and
Marcheselli (2006), Kim et al. (2006), Hussain and Shabbir (2009a, 2009b), Hussain and
Shabbir (2012), Adepetun and Adewara (2014), are the major references on the Bayesian
analysis of the Randomized Response Techniques. In this study, we propose new Bayesian
estimators of the population proportion of respondents who possess ignoble attribute in a
simple random sample of size n assuming different beta priors other than the conventional
simple beta prior found in the literature..

Materials and Methods

In Bayesian Analysis, the prior information about the unknown parameter of the population is
combined with the sample information for the determination of that unknown parameter.
Notable authors like Winkler and Franklin (1979), O’Hagan (1987), Kim et al. (2006), Hussain
and Shabbir (2012) etc. have provided Bayesian analysis to some randomized response
techniques in the literature using simple beta prior.

In this study, we presented both the conventional and the alternative beta priors for the
randomized response technique. Similarly, we assume numerical values for the parameters
in the priors. In the case of simple beta prior, we assume a>1, b>1, a#b, c=1. For
Kumaraswamy prior, we assume a=1, b>1, c¢>1, b#c. For the generalised beta prior, we
assume a>1, b>1, c>1, a#b#c respectively. Consequently, the conventional simple beta
estimator along with the proposed estimators assuming Kumaraswamy and the generalised
beta priors were derived and computed from their respective posterior distributions using R
statistical software respectively.

The tables showing absolute bias, mean square errors and relative efficiencies were
displayed for comparison. Consequently, graphs of the mean square errors, absolute bias of
the estimators were plotted against assigned values of 1 in the range 0<m<7 using selected
sample sizes 25,100, and 250 respectively. Life data obtained from administered survey
questionnaires on induced abortion among 300 women in Akure, Ondo State were also used
to establish the efficiency of the proposed estimators in capturing responses from
respondents with respect to stigmatized attribute..

The Existing Bayesian Technique of Estimation

Hussain and Shabbir (2009a) in their referred paper presented a Bayesian estimation to the
Randomized Response Technique put forward by Hussain and Shabbir (2007) using a
simple beta prior distribution to estimate the population proportion of respondents possessing
sensitive attribute.

Let the simple beta prior be defined as follows
f(ﬂ') = ﬂafl(l— ﬁ)bfl; O<z<1 (2)

1
plab)
where (a,b) are the shape parameters of the distribution and - is the population proportion
of respondents possessing the sensitive attribute.

Let x = > x; be the total number of the women who have committed abortion for a particular

sample of size n selected from the population with simple random sampling with replacement
sampling. Then the conditional distribution of X given - was

f(X|z) = — g1 g 2)

x!(n—x)!

49



Malaysian Journal of Applied Sciences 2017, Vol 2 (1): 48-67

where ¢ is the probability of “yes response” to the sensitive attribute which was defined as

__« _ . B (1 .
¢—m(P17r+(l P )1 ))+a+ﬁ(P2 +(1-P, X1 7)) (3)

where P, is the predetermined probability of “yes” response to the sensitive attribute and
(a, p) are non-zero constants such that P, + P, =1 respectively.

Thus,
N (e ) RV R ) PO (W ) RV R
X a+p a+f
On simplification, it led to
_(n) (2P, -1z - p)) .
f(x|ﬂ)_(xj{ 10{+ﬂ (z+F)(@-7+H)
where
F— pPL+aP, H:3P1(,3—a)+3a
@P,Na-p) = (@P-Dap)
Setting
_(n[(@P - -B) T
A= (e
= W S
for x=0,12,..., n
Thus, the joint probability density functions (pdf) of X and = was
fx.m) =D ZU( i XJF T 1 )L ) ©)
where
) :
5 lx [«zpl S\ ﬂ))}
B(a,b) o+
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Now the marginal distribution of X can be obtained by integrating the joint distribution of X

and 1 with respect to . Thus, the marginal distribution of X was given as

b—1+j

f(X)= jf(x n)d;r—DZnZ:( J( IXJFX_iH”_X_jina_l“(l—;r)

i=0 j=0

f(x)= Diz( j( ;xjpxianjﬁ(aH'bﬂ)

i=0 j=0

f(x, 7r)

f(x)

The posterior distribution of ~ given X was defined as f(ﬂ|X)=
i ix(n J[“ i X]F TH I 22 1 2) (- 2)
i=0 j=0

J
i nz):((xj(n I XJF X—i H n—x—j ﬂ_a—1+i (1_ 7z_)b—1+j

inii((XJ(n — XJF x—iHn—X—i'g(a +i+1Lb+ J)
_ i=0j=o\ J
i—0 j=o\ I J

The Bias of 7, and its mean square error were given as B(ﬁSH )= E(;%SH )—7:

x=0

MSE ()= 37 - )(2J¢X(1—¢)”X

The Proposed Bayesian Techniques of Estimation

(6)

(7)

(8)

(9)

(10)

(11)

In this section, we develop alternative Bayesian estimators to Hussain and Shabbir (2009a)
Randomized Response Technique using both the Kumaraswamy (KUMA) and the
generalised (GLS) beta prior distributions as our alternative beta prior distributions in addition

to the simple beta prior distribution used by Hussain and Shabbir (2009a).
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Estimation of r Using Kumaraswamy Prior

The Kumaraswamy prior distribution of 7 is given as f(z)= bc;z"*l(l— 7° )bfl;b,c >0 (12)

Using the Kumaraswamy prior in (12), the joint probability density function of X and 7 is
derived as

f(x,7)= bCEZnZX()_(j(n I X]F SR 2 (1 7) (120 f ot (13)

Where E = (nj{((zpl ~ e - ﬁ))}n

X a+pf

I
<}
I

o

The marginal probability density function (pdf) of X can be obtained as
1

f(x):_ff(xﬂ)dﬁ (14)
0

X n-xb-1 _ _ ) 1 ) .

f= bCEZ z Z(_ 1)k (Xj(n . Xj(bk 1JF X n=*-l J(l_”)l okHite-ly o

ol J )

— abE ﬁrixb_l(— )¢ m(” ; XJ(bizl]F K Bk ¢+, +1) (15)

f(x, )

f(x)

Similarly, the posterior distribution as usual is obtained as follows f (|x )=

| k

S

k

(16)

Under the Square error loss, we proceed to obtain the posterior mean which is the Bayes

1
estimator as follows 7, = [ #f (z]x )= 17)
0

Considering the fact that

1

) ) 1 ) )
J-ﬂ'(l— 7)) e g =Iﬁ°k+'+°_l(l— z)dr= ﬂ(ck +i+c+1j+1)

0 0
Therefore,
X n-xb-1 — -1 . .
NE 1){?}(” j XJ(bk JF KA Blek +i b 41 +1)
~ i=0 j=0k=0
T = : b (18)

SN[ o meroria o
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As a result, the Bias of 7, as well as its mean square error is also given as

B(ﬁ-KH):E(ﬁ'KH)_ﬁ (19)
Mse(ﬁm>=xio<m)—n[§]¢x<1—¢)"-x 20)

Estimation of r Using the Generalised Beta Prior

The generalised beta prior is defined as

f(z)= a ﬂac’l(l— z° )b_l; ab,c>0 (21)

Where a,b,c are the shape parameters of the prior distribution as given in equation (21)

From binomial series expansion, we know that

P - Sy (® e

k=0

Consequently

c =t k b-1 c(k+a)1
Pl e

As a result, the joint density function of = and X with the generalized beta prior is

f(X,;r):GZX:nszl(—l)k()_(j(n__xj[b_ljFx‘iH”‘X‘j (1) golosia 22
=0 j=0k=0 [ ] Kk
where
o__c (n [«zpl —1)(a—ﬁ))}
~ plab)ix a+p
The marginal probability density function (pdf) of X can then be obtained from (22) as
f(X)ij(X,ﬂ')dﬂ' (23)
x nxb-1 o (xYn-x\b-1)_, . . -
=GY 33 (-1 L'J( j J[ . jFX 'H™ I g(c(k +a)+i,j+1) (24)
i=0 j=0k=0
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Similarly, we obtained the posterior distribution of 7 given X as

T Ll G R

L E Gy @)
R W
i=0 j=0k=f

In the same manner, under the square error loss, the posterior mean which is otherwise
known as the Bayes estimator is given as

ﬁgb_l(— 1) [X][n B Xj[b - 1}F IHIg(c(k +a)+i+1 ] +1)

n i=0 j=0k= | k

Ten = OX] :—kxs—l X r:— x\b-1 (26)
5 Z(—l)k(_J( _ ]( JF“H””ﬂ(c(k+a)+i,j+1)
i=0 j=0k=0 | J k

The Bias of 75, and its mean square error are respectively given as

B(ﬁGH): E(ﬁ'GH )7 (27)

~ 2 ~ n X n-x
MSE (e ) = 2. (Fan —n){x}zﬁ (1-¢) (28)
x=0

Remarks: Equation (9) is the conventional Bayesian estimator of the population proportion
(7:) of the respondents who have committed the sensitive attribute proposed by Hussain and
Shabbir (2009a) while equations (18) and (26) are the newly proposed Bayesian estimators
of the population proportion (n)of the respondents who have committed the sensitive attribute
(the sensitive attribute in this case is abortion).

Relative Efficiency (RE) of the proposed estimator = MSE of the proposed estimator/MSE of
the conventional estimator *100%.

Application

In this section, the proposed Bayesian estimators were applied to life data obtained from the
administered survey questionnaires on induced abortion under the same values of
parameters in the estimators using sample sizes 25, 100 and 250 respectively and compare
the results with the conventional simple beta estimator proposed by Hussain and Shabbir
(2009a). We overcame the associated computational problems by writing computer
programs using available statistical software. Few results in tables and figures were
presented to reduce spaces as follows:
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Table 1. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007)
RRTat n=25x=1La=14=10,P, =0.1,P, =0.9

MSE BETA

MSE KUMA

MSE GLS

RE KUMA

RE GLS

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

4.225819E-10
2.767500E-12
2.968604E-10
1.304861E-09
3.026768E-09
5.462583E-09
8.612305E-09
1.247593E-08
1.705347E-08

1.017346E-08
6.719137E-09
3.978724E-09
1.952218E-09
6.396192E-10
4.092771E-11
1.561435E-10
9.852666E-10
2.528297E-09

1.607482E-08
1.164096E-08
7.921015E-09
4.914973E-09
2.622838E-09
1.044610E-09
1.802902E-10
2.987716E-11
5.933715E-10

2411.347500
242599.2780
1340.067300
150.0000000
21.12210000
0.749100000
1.811800000
7.880000000
14.79530000

3806.146600
418772.5632
2666.666700
377.6923000
86.46860000
19.04760000
2.090600000
0.239200000
3.467800000

Table 2. Absolute Bias for Hussain and Shabbir (2007) RRT at
n=25x=1La=14=10,P, =0.1,P, =0.9

- |IBIAS|BETA |IBIAS|KUMA IBIAS|GLS
0.1 0.10880517 0.53386124 0.67106898
0.2 0.00880517 0.43386124 0.57106898
0.3 0.09119483 0.33386124 0.47106898
0.4 0.19119483 0.23386124 0.37106898
0.5 0.29119483 0.13386124 0.27106898
0.6 0.39119483 0.03386124 0.17106898
0.7 0.49119483 0.06613876 0.07106898
0.8 0.59119483 0.16613876 0.02893102
0.9 0.69119483 0.26613876 0.12893102
1.80E-08 - = MSE BETA
| cor.08 eeeees MSE KUMA
R = == MSE GLS
m 1.40E-08
2 10E-08
S
I 1.00E-08
g
S 8.00E-09
(=2
(72}
c 6.00E-09
P
2 4.00E-09
2.00E-09
0.00E+00

pi

Figure 1. Mean square errors for Hussain and Shabbir (2007) RRT at

n=25x=1L,a=14=10,P, =0.1,P, =0.9
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Figure 2. Absolute Bias for Hussain and Shabbir (2007) RRT at

n=25x=1La=14=10,P,=0.1P, =0.9

Comment: When n=25,P, =0.1 the conventional simple beta estimator is better than the

proposed estimators when r

lies within the range 0.1<z<0.4 while the proposed

estimators are better than the conventional estimator when r lies within the range 0.4< 7 <1
However, the proposed generalised beta estimator is the best in capturing responses from
respondents when = lies within the range 0.7 < 7 <1 respectively.

RRTat n=25x=1La=14=10,P, =0.1,P, =0.8

Table 3. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007)

T

MSE BETA

MSE KUMA

MSE GLS

RE KUMA

RE GLS

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

3.980527E-09
1.953481E-09
6.403423E-10
4.111079E-11
1.557865E-10
9.843696E-10
2.526860E-09
4.783257E-09
7.753562E-09

1.327131E-08
9.275222E-09
5.993041E-09
3.424768E-09
1.570402E-09
4.299438E-10
3.392482E-12
2.907485E-10
1.292012E-09

1.886529E-08
1.403224E-08
9.913099E-09
6.507863E-09
3.816535E-09
1.839114E-09
5.756007E-10
2.599432E-11
1.902953E-10

334.1709000
475.8974000
935.9375000
8321.167900
1006.410300
43.69920000
0.134000000
6.087900000
16.64520000

474.8744000
717.9487000
1548.437500
15839.41610
2448.717900
186.9919000
22.76680000
0.543900000
2.451600000
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Table 4. Absolute Bias for Hussain and Shabbir (2007) RRT at
n=25x=1L,a=14=10,P, =0.1,P, =0.8

T IBIAS|BETA |BIAS|[KUMA IBIAS|GLS
0.1 0.33393689 0.60974884 0.72698568
0.2 0.23393689 0.50974884 0.62698568
0.3 0.13393689 0.40974884 0.52698568
0.4 0.03393689 0.30974884 0.42698568
0.5 0.06606311 0.20974884 0.32698568
0.6 0.16606311 0.10974884 0.22698568
0.7 0.26606311 0.00974884 0.12698568
0.8 0.36606311 0.09025116 0.02698568
0.9 0.46606311 0.19025116 0.07301432

2.00E-08 - e MSE BETA

1.80E-08 - seeees MSE KUMA
1.60E-08 - = == MSE GLS

my

< 1.40E-08

S 1.20E-08

b

o 1.00E-08

S

& 8.00E-09

wv

§ 6.00E-09

s

4.00E-09

2.00E-09

0.00E+00

pi

Figure 3. Mean square errors for Hussain and Shabbir (2007) RRT at

n=25x=1L,a=14=10,P, =0.1,P, =0.8
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Absolute Bias
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Figure 4. Absolute Bias for Hussain and Shabbir (2007) RRT at

n=25x=1,a=14=10,P,=0.1P, =0.8

Comment: When n=25,P, =0.2, the conventional simple beta estimator is better than the

proposed estimators when 7«

lies within the range 0.1<x<0.6 while the proposed

estimators are better than the conventional estimator when  lies within the range 0.5< 7 <1.
However, the proposed generalised beta estimator is the best in capturing responses from

respondents when r lies within the range 0.7 < 7z <1 respectively.

Table 5. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007)

RRT at n =100,x =43, =1 4 =10,P, =0.1,P, =0.9

T MSE BETA MSE KUMA MSE GLS RE KUMA RE GLS
0.1 7.321979E-33 6.766773E-34 5.777443E-33 924.8634000 78.96170000
0.2 5.326008E-32 2.931831E-32 4.789110E-33 54.97190000 8.986900000
0.3 1.413718E-31 1.001335E-31 4.597435E-32 70.92200000 32.62410000
0.4 2.716570E-31 2.131223E-31 1.293332E-31 78.30880000 47.42650000
0.5 4.441158E-31 3.682846E-31 2.548655E-31 82.88290000 57.43240000
0.6 6.587482E-31 5.656206E-31 4.225715E-31 85.88770000 64.18820000
0.7 9.155541E-31 8.051300E-31 6.324510E-31 87.88210000 68.99560000
0.8 1.214534E-30 1.086813E-30 8.845041E-31 90.08260000 73.14050000
0.9 1.555687E-30 1.410670E-30 1.178731E-30 90.38460000 75.64100000
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Table 6. Absolute Bias for Hussain and Shabbir (2007) RRT at

n=100,x =43,a0 =14 =10,P, =0.1,P, =0.9

T |BIAS|BETA |BIAS|[KUMA IBIAS|GLS
0.1 0.05892628 0.01791371 0.05234349
0.2 0.15892628 0.11791371 0.04765651
0.3 0.25892628 0.21791371 0.14765651
0.4 0.35892628 0.31791371 0.24765651
0.5 0.45892628 0.41791371 0.34765651
0.6 0.55892628 0.51791371 0.44765651
0.7 0.65892628 0.61791371 0.54765651
0.8 0.75892628 0.71791371 0.64765651
0.9 0.85892628 0.81791371 0.74765651
1.80E-30 - e ISE BETA
1 60E-30 - eeeses MSE KUMA
= = = MSE GLS
1.40E-30 -
T
g 1.20E-30 -
!o-
£ 1.00E-30 -
w
g
S 8.00E-31 -
(=2
(7]
c
S 6.00E-31 -
b
4.00E-31 -
2.00E-31 -
0.00E+00 .
0 1
pi

Figure 5. Mean square errors for Hussain and Shabbir (2007) RRT at
n=100,x =43, =14 =10,P, =0.1,P, =0.9
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1 - |BIAS|BETA
09 - cesees |BIAS| KUMA
= == |BIAS| GLS
0.8 -
0.7 -

Absolute Bias
o o o o
w H (6] [e)}
1 1 1 1

o
N
1

pi

Figure 6. Absolute Bias for Hussain and Shabbir (2007) RRT at
n=100,x =43,a0 =14 =10,P, =0.1,P, =0.9

Comment: When n=100,P, =0.1 the proposed estimators are better than the conventional

simple beta estimator when 7 lies within the range 0.1<x <1. However, the proposed
generalised beta estimator is the best in capturing responses from respondents when r lies
within the range 0.1< 7 <1 respectively.

Table 7. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007)

RRT at n =100,x =43, =1, =10,P, =0.2,P, =0.8

T

MSE BETA

MSE KUMA

MSE GLS

RE KUMA

RE GLS

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2.791151E-31
1.467660E-31
5.659053E-32
8.588608E-33
2.760257E-33
3.910548E-32
1.176243E-31
2.383166E-31
4.011825E-31

4.914985E-31
3.089766E-31
1.686283E-31
7.045355E-32
1.445236E-32
6.247455E-34
2.897070E-32
9.949022E-32
2.121833E-31

6.731825E-31
4.559816E-31
2.809543E-31
1.481005E-31
5.742033E-32
8.913720E-33
2.580680E-33
3.842121E-32
1.164353E-31

175.9856631
210.2040816
298.5865724
820.7217695
525.3623188
1.598465473
2457627119
41.80672269
52.86783042

241.2186380
310.2040816
496.4664311
1722.933644
2079.710145
22.78772379
2.186440678
16.13445378
28.92768080
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Table 8. Absolute Bias for Hussain and Shabbir (2007) RRT at
n=100,x =43,a=14=10,P, =0.2,P, =0.8

T |BIAS|BETA [BIAS|[KUMA IBIAS|GLS
0.1 0.36381991 0.48278740 0.56501661
0.2 0.26381991 0.38278740 0.46501661
0.3 0.16381991 0.28278740 0.36501661
0.4 0.06381991 0.18278740 0.26501661
0.5 0.03618009 0.08278740 0.16501661
0.6 0.13618009 0.01721260 0.06501661
0.7 0.23618009 0.11721260 0.03498339
0.8 0.33618009 0.21721260 0.13498339
0.9 0.43618009 0.31721260 0.23498339
8.00E-31 - = MSE BETA
7 00E-31 4 seeeee MSE KUMA
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Figure 7. Mean square errors for Hussain and Shabbir (2007) RRT
n=100,x=43,a0=14=10,P, =0.2,P, =0.8
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Figure 8. Absolute Bias for Hussain and Shabbir (2007) RRT at
n=100,x=43,a0=14=10,P, =0.2,P, =0.8
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Comment: When n=100,P, =0.2, the conventional simple beta estimator is better than the
proposed estimators when 7z lies within the range 0.1<7<0.6 while the proposed
estimators are better than the conventional estimator when = lies within the range 0.5< 7 <1.

However, the proposed generalised beta estimator is the best in capturing responses from
respondents when r lies within the range 0.6 < 7z <1 respectively.

Table 9. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007)
RRT at n =250,x =106, =1, 4 =10,P, =0.1P, =0.9

T MSE BETA MSE KUMA MSE GLS RE KUMA RE GLS

0.1 6.762010E-77 4.132263E-77 9.538537E-78 61.09467456 14.11242604
0.2 3.327631E-76 2.705011E-76 1.717961E-76 81.38138138 51.65165165
0.3 7.986527E-76 7.004263E-76 5.348004E-76 87.60951189 66.95869837
0.4 1.465289E-75 1.331098E-75 1.098551E-75 90.47619048 74.82993197
0.5 2.332672E-75 2.162517E-75 1.863049E-75 92.70386266 79.82832618
0.6 3.400802E-75 3.194682E-75 2.828293E-75 93.82352941 83.23529412
0.7 4.669678E-75 4.427594E-75 3.994285E-75 94.86081370 85.43897216
0.8 6.139301E-75 5.861253E-75 5.361022E-75 95.43973941 87.29641694
0.9 7.809671E-75 7.495658E-75 6.928507E-75 96.03072983 88.73239437

Table 10. Absolute Bias for Hussain and Shabbir (2007) RRT at
n=250,x=106,a¢ =13 =10,P, =0.1,P, =0.9

T |BIAS|BETA IBIAS|KUMA |BIAS|GLS
0.1 0.08207837 0.06416302 0.03082703
0.2 0.18207837 0.16416302 0.13082703
0.3 0.28207837 0.26416302 0.23082703
0.4 0.38207837 0.36416302 0.33082703
0.5 0.48207837 0.46416302 0.43082703
0.6 0.58207837 0.56416302 0.53082703
0.7 0.68207837 0.66416302 0.63082703
0.8 0.78207837 0.76416302 0.73082703
0.9 0.88207837 0.86416302 0.83082703
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Figure 9. Mean square errors for Hussain and Shabbir (2007) RRT at
n=250,x=106,a¢ =1 3 =10,P, =0.1,P, =0.9
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Figure 10. Absolute Bias for Hussain and Shabbir (2007) RRT at
n=250,x=106,a¢ =1 3 =10,P, =0.1,P, =0.9

Comment: When n=250,P, =0.1 the proposed estimators are better than the conventional

simple beta estimator when 7 lies within the range 0.1<x <1. However, the proposed
generalised beta estimator is the best in capturing responses from respondents when 1 lies
within the range 0.1< z <1 respectively.
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n=250,x=106,a¢ =14 =10,P, =0.2,P, =0.8

Table 11. Mean square errors and Relative Efficiency for Hussain and Shabbir (2007) RRT at

MSE BETA

MSE KUMA

MSE GLS

RE KUMA

RE GLS

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

6.286780E-77
3.221153E-76
7.821096E-76
1.442850E-75
2.304338E-75
3.366572E-75
4.629553E-75
6.093281E-75
7.757756E-75

1.617733E-75
9.121848E-76
4.073836E-76
1.033292E-76
2.144654E-80
9.746041E-77
3.956461E-76
8.945784E-76
1.594257E-75

2.278710E-75
1.422586E-75
7.672089E-76
3.125784E-76
5.869454E-77
5.557399E-78
1.531669E-76
5.015232E-76
1.050626E-75

2575.516693
283.2298137
52.04603581
7.152777778
0.000930435
2.893175074
8.552915767
14.69622332
20.48969072

3624.801272
440.9937888
98.08184143
21.73611111
2.552173913
0.164985163
3.304535637
8.243021346
13.53092784

Table 12. Absolute Bias for Hussain and Shabbir (2007) RRT at
n=250,x=106,a¢ =14 =10,P, =0.2,P, =0.8

- |BIAS|BETA IBIAS|[KUMA IBIAS|GLS
0.1 0.07914162 0.401461737 0.47646975
0.2 0.17914162 0.301461737 0.37646975
0.3 0.27914162 0.201461737 0.27646975
0.4 0.37914162 0.101461737 0.17646975
0.5 0.47914162 0.001461737 0.07646975
0.6 0.57914162 0.098538263 0.02353025
0.7 0.67914162 0.198538263 0.12353025
0.8 0.77914162 0.298538263 0.22353025
0.9 0.87914162 0.398538263 0.32353025
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Figure 11. Mean square errors for Hussain and Shabbir (2007) RRT at

n=250,x =106,a =1 3=10,P, =0.2,P, =0.8
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Figure 12. Absolute Bias for Hussain and Shabbir (2007) RRT at
n=250,x=106,a¢ =1 4=10,P, =0.2,P, =0.8

Comment: When n=250,P, =0.2, the conventional simple beta estimator is better than the

proposed estimators when 7z lies within the range 0.1<7<0.3 while the proposed
estimators are better than the conventional estimator when = lies within the range 0.2 < 7 <1.
However, the proposed generalised beta estimator is the best in capturing higher responses
from respondents when r lies within the range 0.5 < 7 <1 respectively.

Results and Discussion

From the results presented in Table and Fig. 1 to 12 respectively, when n=25,P, =0.1, the
proposed Bayesian estimators are better than the conventional simple beta estimator when
7 lies within the range 0.4 < 7 <1. However, the proposed generalised beta estimator is the
best in capturing responses from respondents when 7z lies within the range 0.7 < 7 <1.
When n=25P, =0.2, the proposed Bayesian estimators are better than the

conventional simple beta estimator when 7z lies within the range 0.5 <7z <1. However, the
proposed generalised beta estimator is the best in capturing responses from respondents
when 7 lies within the range 0.7 < 7 <1.

When n =100,250,P, =0.1, the proposed estimators are better than the conventional

simple beta estimator when = lies within the range 0.1<7z <1. However, the proposed
generalised beta estimator is the best in capturing responses from respondents when r lies
within the range 0.1< 7 <1.

When n=100,P, =0.2, the proposed Bayesian estimators are better than the
conventional simple beta estimator when 7z lies within the range 0.5 <z <1. However, the
proposed generalised beta estimator is the best in capturing responses from respondents
when = lies within the range 0.6 < 7 <1.

When n=250,P, =0.2, the proposed estimators are better than the conventional

simple beta estimator when 7 lies within the range 0.2 <z <1. However, the proposed
generalised beta estimator is the best in capturing responses from respondents when r lies
within the range 0.5 < = <1respectively.
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Conclusion

We have developed the alternative Bayesian estimators of the population proportion of
respondents with respect to stigmatized attribute when life data were gathered through the
administration of questionnaires on abortion on 300 matured women in some selected
hospitals in Akure, Ondo State assuming both Kumaraswamy (KUMA) and the generalised
(GLS) beta priors as our alternative beta prior distributions in addition to simple beta prior
distribution used by Hussain and Shabbir (2009a). We observed clearly from the results
presented in tables and figures above, that for small, intermediate as well as large sample
sizes, the proposed Bayesian estimators were more sensitive in capturing responses from
respondents than that of Hussain and Shabbir (2009a). In particular, the proposed
generalised beta estimator is the best in capturing information from respondents in survey
which asks sensitive questions.
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