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Abstract 
 
One shows that we can build a long recurring sequence super-increasing and use it in the 
cryptographic system based on the Knapsack problem, for example the Merkle-Hellman cipher. 
Thus, we reduce the size of the key with the same system safety. For this, we have modified 
the generalized Fibonacci sequence to produce of a super-increasing sequence. This 
modification was based essentially on the use of real coefficients in the main recursive 
equation. The result of this, it is the transformation of the public key of the Merkle-Hellman 
crypto system into a secret algorithm and, for an equivalent complexity. 
 
Keywords: Fibonacci sequence; Merkle-Hellman; super-increasing sequence; Knapsack 
problem. 
 
 
Introduction 
 
The knapsack problem is one of 21 NP-complete problems of Richard Karp, set out in his 
Article in 1972 (Karp, 1972; Clark et al., 1996). The formulation of the problem is simple, but its 
resolution is more complex. However, the singularly structure of the problem and, the fact that it 
to be present as a sub-problem in other more general problems, make it a subject for the 
research. It consists to stack objects into a bag, to achieve (if possible) a total fixed weight. 
More formally, given the integers weights P1... Pn and the goal T, it is to find b1... bn, being worth 
0 or 1, such as: 
 

T = b1P1 + b2P2  + ... + bnPn 
 

If the sequence of Pk weight is a super-increasing sequence (each weight is strictly 
greater than the sum of all previous), then there exist a simple resolution method (greedy 
algorithm):  

 

Greedy Algorithm 

For i = n à 1 Do 
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     Si T Pi Then 
         T = T - Pi 
         bi = 1 
     If not 
         bi = 0 

If T = 0 alors {b1, ..., bn} is a solution, otherwise there is no solution 
 

Make sure that with this super-increasing sequence P1=2, P2=3, P3=6, P4=12 and T=15, one 
obtained the solution b1=0, b2=1, b3=0, b4=1. 

On the contrary, if the sequence of the weight is not a super-increasing sequence, the 
only known algorithm consists to try successively all the solutions (b1, b2... bn) possible. If the 
sequence is sufficiently long, it is an impractical algorithm. The knapsack problem is another 
example of one-way function (for fixed x, the calculation of f(x) is very easy, but the reverse is 
not possible). It is also used in cryptography as a basis for different encryption schemes. It 
should be noted that most of these encryption schemes are currently not considered safe. In 
1978 (Merkle and Hellman, 1978), Ralph Merkle and Martin Hellman proposed their public key 
crypto system based on this famous problem. In this work, we try to propose a method based 
on the generalized Fibonaci sequence (Schneier, 1996) with real coefficients, for the 
construction of the super-increasing sequence and, use it in the Merkle-Helman cryptographic 
system. The novelty in this approach is the transformation of this algorithm into a secret-key 
cryptographic system, with a diminution of the length of the encryption key. 

The organization of this work is as follows, Section 2 involves the study of the Merkle-
Hellman algorithm and Section 3 provides an overview on the Fibonaci sequence. In Section 4, 
we propose a method to generate the super-increasing sequence, the originality of this 
improvement is the use of real coefficients in the generalized Fibonaci sequence, some results 
are presented in this section and ending in the next section with a conclusion. 
 
 
Merkle-Helman Cryptographic System 
 
The cryptosystem Merkle and Hellman (Merkle and Hellman, 1978; Schneier, 1996; Stinson, 
2001) uses the knapsack problem described above as follows: 
 
Generation of keys of crypto system 
1. A positive integer n, large enough (Merkle and Hellman recommend taking n in the order of 

100). 
2. Choose a sequence {b1, b2,..., bn} of positive integers checking the following property: 

∀ 𝑖 ∈ [2, 𝑛], 𝑏𝑖 > ∑ 𝑏𝑗

𝑖−1

𝑗=1

 

3. Choose an integer M, called module, such as: 

𝑀 > ∑ 𝑏𝑖

𝑛

𝑖=1

 

4. Choose an integer W[1, M-1] prime with M, as the gcd (W, M) = 1. 
5. Calculate: 

ai'=W× bi mod M pour i  [1, n] 
6. Find the permutation π from {1, 2,..., n} such that {aπ(1)', aπ(2)',..., aπ(n)'} is an increasing 

sequence. 
7. The public key is: 

(a1, a2,..., an) = (aπ(1)', aπ(2)',..., aπ(n)') 
This key may be freely distributed to all potential correspondents or stored in a directory 
comparable to those used for phone numbers. 

8. The private key consists of M, W, (b1, b2,..., bn)  and the permutation π.  
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This private key must always be kept confidential and must not be provided to anyone because 
it is not needed to encrypt a message. However, It is indispensable (if the system is safe) in 
order to decrypt a message. 
 
Principle of Encryption 
1. The message to be encrypted is written in a sequence in the binary form: m1 m2... mn, with 

mi{0,1}, (if the message is too long, it is cut into blocks of n bits or less). 
2. Calculate the encrypted C as: 

𝐶 = ∑ 𝑚𝑖 . 𝑎𝑖

𝑛

𝑖=1

 

3. Transmit C. 
 

Decryption Algorithm 
1. Calculate d =W-1×(c mod M),  using the extended Euclidean algorithm, 

2. Calculate 1, 2,...,n such that d is given by 

𝑑 = ∑ 𝜀𝑖. 𝑏𝑖

𝑛

𝑖=1

 

It is very simple to solve this knapsack problem using the following property of bi: 

𝑏𝑖 > ∑ 𝑏𝑗

𝑖−1

𝑗=1

 

3. Calculate mi= π(i) for i [1, n] 
4. The decrypted message is written in a sequence in the binary form, as m1 m2... mn. 
 
Numerical Example 
1. For a small artificially n, we take n = 10 
2. Choose the bi : 4, 9, 30, 70, 185, 451, 1306, 3534, 6517, 17486 
3. Choose  M : 50349 (>∑i=1

n bi) 
4. Choose W : 36334 (prime with M) 
5. Calculate the ai : 44638, 24912, 32691, 25930, 25373, 23209, 23446, 14406, 47680, 32642 
6. Find the permutation π : π(1)=8, π(2)=6, π(3)=7, π(4)=5, π(5)=2, π(6)=4, π(7)=10, π(8)=3, 

π(9)=1, π(10)=9. 
7. The public key is: (14406, 23206, 23446, 25373, 24912, 25930, 32642, 32691, 44638, 

47680) 
8. The private key consists of M, W, (b1, b2,..., b10)  and the permutation π. 

Encryption of the message (1,0,0,1,0,0,0,1,1,0), we will have 
C=14406+25373+32691+44638=117108 
The decryption of C is as follows, applying the extended Euclidean algorithm to W and M : 
7864× W-5675× M=1 thus W-1=7864 mod M, we calculate  d=W-1× c mod M  = 7865× 
117108 mod 50349=3753 

9. Resolution of the knapsack problem with bi and the target value 3753 : 3534+185+ 

30+4=3753=b1+b3+b5+b8, whether : (1,2,3, 4, 5, 6, 7, 8, 9, 10)= (1,0,1,0,1,0,0,1,0,0) 

10. Calculation of m1=π(1)= 8=1, m2=π(2)= 6=0, m3=7=0, m4=5=1, m5=0, m6=0, m7=0, m8=1, 
m9=1, m10=0 

11. We recover the original message (1,0,0,1,0,0,0,1,1,0). 
 

Other Example  
1. For n = 9, Alice chooses S = (1, 3, 5, 11, 25, 53, 101, 205, 512), m = 960 and w = 143. The 

inverse d of 143 mod 960 is 47. 
2. For each element ai of S, Alice computes bi = ai*e mod m, to give (143, 429, 715, 613, 695, 

859, 43, 515, 256). By ordering bi, it gets the public key 'knapsack' S '= (43, 143, 256, 429, 
515, 613, 695, 715, 859). 
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3. To express the message "RAS" in binary code, Bernard can, for example, use the 8-bit 
ASCII code. R corresponds to 01010010, A to 01000001 and S to 01010011. The message 
to be encryption is “RAS” =  0101001 0010000 0101010 011. 
It breaks down into blocks of length L, agreed (7 for example) and encrypts each block: 
0101001 to be coded into 43 + 429 + 613 = 1085, 0010000 to be coded into 515, 0101010 

to be coded into 143 + 429 + 613 = 1185, 011 → 0110000 and, to be coded into 515 + 613 
= 1128.  
It transmits the following message to Alice 108-515-1185-1128 

4. Alice will decrypt the message element by element, calculating (M*d mod m), and 
determining the solution of the knapsack problem. 

✓ 1085 * 47 mod 960 = 115 = 101+11+3 correspond to 0000001 + 0100000 + 0001000 = 
0101001 

✓ 515 * 47 mod 960 = 205 = 205 correspond to 0010000 
✓ 1185 * 47 mod 960 = 15 = 11+3+1 correspond to 0100000 + 0001000 + 0000010 = 

0101010 
✓ 1128 * 47 mod 960 = 216 = 205+11 correspond to 001000 + 0100000 = 0110000 

Alice finds the original message: 0101 0010 0100 0001 0101 0011 0000 : RAS. 
 
Encryption of Text 
1. n = 9  
2. Choose a super-increasing sequence S (Schneier 1996) containing at least nine elements 

(separate your numbers with commas): 2, 5, 9, 21, 45, 103, 215, 450, 946 
3. ∑i=1

n ai = 1796 
4. Choose a number M greater than (∑i=1

n ai) and a number W prime with M: 

• M = 2003 

• W = 1289 
5. Your public key is: {436, 569, 575, 721, 1030, 1183, 1570, 1586, 1921}. 
6.  The inverse of (W mod m) is : 317 
7. Choose the length L of the encryption block, L should be less than or equal to 9 

• L = 5 

• L = 8 
The text to encrypt is in French, its translation is as follows: “The first public key of 
cryptosystem, which was proposed by Ralph Merkle and Martin Hellman in 1978, is based on 
the knapsack problem. There is currently not used, as well as many variations, has been 
broken  by Adi Shamir in the early 80.” 
 
Plaintext in French : « Le premier cryptosystème à clef publique, qui fut proposé par Ralph 
Merkle et Martin Hellman en 1978, est basé sur le problème du sac à dos (Knapsack problem 
en anglais). Il n'est plus utilisé actuellement puisque ce chiffre, ainsi que de nombreuses 
variantes, a été cassé au début des années 80 par Adi Shamir. » 
 
Ciphertext With L= 5 : « 1157,1466,1599,1599,0, 

2326,1005,1599,1296,2041,2174,2174,1599,2187,1726,1599,575,436,1466,2610,575,2895,1726,1030,1865,1466,2

610,2610,1144,2895,1726,2035,1865,2035,1605,1144,2320,2187,1157,0,2326,0,1030,1144,1144,2756,1005,1011,1

296,1751,1030,1580,0,2762,1726,569,1732,1466,1605,2610,569,2762,1726,1011,1011,1030,1030,1580,569,2762,1

726,1157,575,436,2035,1580,1290,2762,436,0,1865,436,2187,1144,2895,2326,1005,2301,1865,2301,1605,1599,0,

2326,1005,436,1865,721,1030,1011,575,1751,1726,1296,1865,436,1605,569,0,2035,1726,1011,1865,1157,2041,21

74,1751,2187,1157,0,1296,2041,2320,569,0,2035,1726,436,1865,1157,2320,1144,1599,2756,1466,0,1157,436,159

9,2174,1751,2756,1005,1732,1296,1011,2610,569,0,2187,1726,1865,575,0,1751,2035,1599,1732,2187,1751,1011,

1030,1030,1144,1290,2326,2756,1605,575,436,1466,1144,569,2326,3331,1157,575,436,2187,2610,1290,2326,146

6,0,1732,1466,1599,1599,0,2326,1005,1599,1732,2762,1466,1144,2187,2320,1005,1732,1296,1605,1030,1144,721

,2762,1157,0,1865,1732,1030,2174,1144,721,1580,0,575,436,1599,1144,2895,2326,2187,0,1011,436,1011,2174,23

26,1751,1726,1030,1865,1732,1030,2174,1144,2320,2187,0,1865,436,2187,1144,2895,1751,2035,1296,1296,2041,

2174,1599,0,2187,1726,1865,575,436,1030,2174,2326,2187,2756,1296,1296,1011,1605,2610,1144,1290,1157,186

5,575,436,575,2174,1751,721,1005,1865,575,2762,1599,2610,1144,2762,436,0,1865,436,2174,1580,1290,2326,21
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87,0,1865,2041,2320,1144,1599,2756,1005,1157,1865,2301,1605,1599,0,1751,1726,1005,1865,1466,2320,2174,12

90,2756,1005,1296,1296,2041,2174,2174,1290,2756,2035,1605,575,436,1751,1580,1290,2320,1726,2035,1865,10

11,2320,2174,1290,721,1005,1005,1296,1605,1030,1144,1144,2320,1005,1157,1296,2187,2035,1580,575,2187,11

57,1296,575,436,1030,2174,1599,2756,2035,2035,1732,575,1030,1580,569,2762,1726,1011,575,436,1599,1144,12

90,721,1005,1865,1732,2762,2174,2174,575,2326,2035,1011,1865,2041,2187,2174,1290,2326,2187,0,1865,2187,1

030,2610,575,2320,1726,436,1732,2187,2320,1144,1290,2326,2187,1296,575,436,1030,1599,436,2320,1726,1605,

2762,575,1030,1144,1144,1751,1726,2035,1865,2301,1605,1599,0,1751,1726,2041,575,436,1599,1865,1599,1751,

2035,2041,1865,1030,1030,1144,721,2187,1726,2035,575,436,1030,2174,2326,2756,2610,1157,1296,2041,2187,1

599,0,1865,436,1030,575,436,1751,1144,569,2326,1466,0,721,1011,1599,1144,1599,721,569,2035,1732,436,1030,

2174,2320,2320,1726,1599,1011,175. ». 

Ciphertext With L= 8 : « 2866,3764,1183,3783, 

4352,3764,4485,3910,3764,4352,1183,3758,4352,4940,3783,4358,5054,4788,4940,4788,4358,5060,4485,3764,11

83,4339,1183,3758,4049,3764,3897,1183,3783,4794,3322,4049,3910,4219,4794,3764,2479,1183,4219,4794,3910,

1183,3897,4794,4358,1183,3783,4352,5054,3783,5054,4788,5496,1183,3783,3189,4352,1183,3169,3189,4049,37

83,3474,1183,3302,3764,4352,4479,4049,3764,1183,3764,4358,1183,3302,3189,4352,4358,3910,4618,1183,2291,

3764,4049,4049,4485,3189,4618,1183,3764,4618,1183,2649,3370,3793,2934,2479,1183,3764,4788,4358,1183,33

22,3189,4788,5496,1183,4788,4794,4352,1183,4049,3764,1183,3783,4352,5054,3322,4049,5060,4485,3764,1183,

3328,4794,1183,4788,3189,3758,1183,4339,1183,3328,5054,4788,1183,1904,3296,4618,3189,3783,4788,3189,37

58,4479,1183,3783,4352,5054,3322,4049,3764,4485,1183,3764,4618,1183,3189,4618,4333,4049,3189,3910,4788,

2340,3048,1183,2727,4049,1183,4618,2763,3764,4788,4358,1183,3783,4049,4794,4788,1183,4794,4358,3910,40

49,3910,4788,5496,1183,3189,3758,4358,4794,3764,4049,4049,3764,4485,3764,4618,4358,1183,3783,4794,3910,

4788,4219,4794,3764,1183,3758,3764,1183,3758,3474,3910,3897,3897,4352,3764,2479,1183,3189,3910,4618,47

88,3910,1183,4219,4794,3764,1183,3328,3764,1183,4618,5054,4485,3322,4352,3764,4794,4788,3764,4788,1183,

4927,3189,4352,3910,3189,4618,4358,3764,4788,2479,1183,3189,1183,5496,4358,5496,1183,3758,3189,4788,47

88,5496,1183,3189,4794,1183,3328,5496,3322,4794,4358,1183,3328,3764,4788,1183,3189,4618,4618,5496,3764,

4788,1183,2934,2213,1183,3783,3189,4352,1183,2006,3328,3910,1183,3605,3474,3189,4485,3910,4352,3048 ». 

 
Several remarks must be made: 
1. If the length of the encryption block is equal to the characters in 8-bit ASCII code, each 

letter will be encoded by the same number. Then the system is vulnerable to an attack by 
the frequency analysis. It is therefore appropriate to choose the length of encryption blocks 
lower than that of the key. 

2. Only the knowledge of the public key is required to decrypt a message. By cons, it is 
necessary to have all of the private key elements to be able to encrypt, using the proposed 
algorithm. We are therefore in a public key encryption scenario. 

3. Find the plaintext message associated with an encrypted requires solving a knapsack 
problem as described above. Thus, the security of the crypto-system therefore relies heavily 
on the assumption that this problem is impossible to solve without knowing the private key. 

4. Knowing the private key, it will be easy to calculate the public key. Nevertheless, find the 
private key, including bi, from the public key, i.e. ai, is a seemingly difficult problem. 

 
 
Generalized Fibonaci Sequence 
 
The Fibonacci sequence (Schneier, 1996; Allaire and Kaber, 2002; Schatzmann, 2002) 
satisfies the following recurrence relation:  

un+1=un+un-1. 
This recurrence relation is initiated by the first two terms, which are u0=0, and u1=1. The first 
terms of the Fibonacci sequence are:   

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... 
What characterizes this sequence of numbers and make it universal is the universal fact that, if 
we take two consecutive numbers and that, we divide the smallest of them by the largest, we 
always get an approximate value of quotient 1/1.618, or 0.618, that is to say, the golden ratio 

(𝜑 =
1

1.618
= 0.618). 
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Sometimes we meet the definition of generalized Fibonacci sequences. These are the 
sequences that satisfy the following recurrence equation, with a and b integers:  

un+1=a*un+b*un-1. 
The name of this sequence "Fibonacci sequence" was given by the French arithmetician, 
Edouard Lucas in 1817, when he studied what is now called the "generalized Fibonacci 
sequences" obtained by changing the first two terms of the sequence Fibonacci and following 
the same process of construction.  
The simplest of them, is the sequence which has the first two terms are 1 and 3, now called the 
Lucas sequence (It begins with 1, 3, 4, 7, 11, 18, 29, 47 ...). 
 
 
Proposal for the Construction of the Super-Increasing Sequence 
 
The crypto systems based on the use of a Knapsack, use a considerable data contained in the 
latter (Bournon, 1991; Petit, 1982; Karnin and Hellman, 1983; Chor and Rivest, 1988). The 
generation of these data is tricky. 
We propose a method to generate a super-increasing sequence (each element is greater than 
the sum of the above). This generation is based on the generalized Fibonaci sequence. 
It is only necessary to have four elements to calculate the sequence A super-increasing for any 
value of N. For this, we take two initial values of the sequence A (starting values A1and A2) 
with two other real factors α, ß as follows: 

Ai=  Ai-2* α + Ai-1 * ß        i≥3   (*) 

. (Floor: Integer part of Ai )+1) 
 
Condition: 
We must have:   𝐴1<𝐴2  and α ≤ ß 
Otherwise, the super-increasing sequence would not be possible. 
 
Examples of the generation of the super-increasing sequence A 
1) For this first example we have taken the following four values: 
 

A1 A2 α ß 

1 3 1.1045 1.852 

 
The first sequence is:  
1 – 3 – 6- 14 – 32 – 74 – 172 – 400 – 930 - 2164 
We can check easily that this sequence is super-increasing sequence. 
 
2) Here is a second example that we have changed the two starting coefficients. For this 
example, we changed the value of both coefficients α and ß 
 

A1 A2 α ß 

1 3 1.0045 1.952 

 
We found the sequence:  
1 – 3 – 6 - 14 – 33 – 78 – 185 – 439 – 1042 – 2474. 
We can check that this sequence is super-increasing sequence. 
 
3) We'll now take a third example, by putting α=ß 
 

A1 A2 α ß 

1 3 1.952 1.952 

 
We found the following sequence: 1 – 3 – 7 – 19 – 50 – 134 – 359 – 962 – 2578 – 6910  
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This sequence is super-increasing sequence for these values. 
 
4) We'll now take a fourth example, by putting α > ß 
 

A1 A2 α ß 

1 3 1.952 1.0045 

 
We found the following sequence: 1 – 3 – 4 – 9 – 16 – 33 – 64 – 128 – 253 - 503 
This sequence is not a super-increasing sequence because the condition (α ≤ ß) was not 
respected, for this example we have α> ß 
 
5) We will now take a fifth example, by putting A1 ˃ A2 

 

A1 A2 α ß 

3 1 1.0045 1.952 

 
We found the following sequence: 
 3 – 1 – 4 – 8 – 19 – 45 – 106 – 252 – 598 – 1420  
At first, this sequence is not a super-increasing sequence, but after a few iterations, it checks 
the condition of the super-increasing sequence. 
 
6) In this sixth example we will talk about the deviation rate between the two factors α and ß, so 
that the sequence A either a super-increasing sequence. 
 

A1 A2 α ß 

1 3 1.0045 1.5 

 
For these values, and after trying several times, we have successfully get this super-increasing 
sequence:  

1 – 3 – 5 – 10 – 20 – 40 – 80 – 160 – 320 – 640 
The deviation rate T between s α and ß is: 

𝑇 =
𝛼

𝛽
=

1.0045

1.5
= 0.669 

 
Deduction: 
If we Take ß> α so that, the sequence A of n = 10 either a super-increasing sequence, we will 
require that the following equation be achievable: 

ß =
α

𝑇
        and        T < 66.9%     (eq.*) 

7) In this seventh example, we will choose α and T, one way to obtain ß (eq.*) with T=52% so 
that, the sequence A either a super-increasing sequence. 
 

A1 A2 α ß 

1 3 1.03 1.980 

 
We found the following sequence: 1 – 3 – 6 – 14 – 33 – 79 – 190 – 457 – 1100 – 2648  
We can check that this sequence is super-increasing sequence. 
 
8) We will change the value of T = 72% and we will check if the sequence A is a super - 
increasing sequence. 
 

A1 A2 α ß 

1 3 1.03 1.43 
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We found the following sequence: 1 – 3 – 5 – 10 – 19 – 37 – 72 – 141 – 275 – 538  
This sequence is not super-increasing sequence for T=72%, because it did not verify the 

equation (eq. *). 
 
Remarks: Recent research dealing with this crypto system (Agarwal, 2011; Lokeshwari et al., 
2011), they use systematically of any super-increasing sequences, without any details of their 
origin. 

This proposal for the generation of a super-increasing sequence A of n elements, 
allowed us to gain in the fields of encryption key: we have 4 values for the A generation, plus 3 
values for M, W and N. We have only 7 values for our proposal compared to the original 
method which requires (n+3) values. 

The proposed method produces elements of the super-increasing sequence, in a 
manner recurring and adds the random characteristic to the latter. 
 
 
Conclusion 
 
We have transformed the public key cryptosystem of Merkle and Hellman in a secret key 
algorithm and for an equivalent complexity. 

In the proposed algorithm, the size of the secret key encryption and the number of 
different values that can be used in the encryption process are set as follows: 
 

ST = {α, ß, A, B, D, N}. 
where α and ß are double precision numbers. D (the starting index value, of the generalized 
Fibonaci sequence in the previous examples we took D = 1).      N= (the number of samples of 
the super-increasing sequence), A (= A1) and B (= A2) are integer constants. 

If the accuracy of calculation of α, ß (irrationals numbers), is 10-16 and, A  [1, 128], B  [1, 

128], D  [1, 64] and N  [1, 64]. 
 
Therefore, the key space is greater than: 

1016 x 1016 x 128 x 128 x 64 x 64, (with 103210), in this case there will be a key field of the 
order of 2132, 
Thus, the encryption key length is 132 bits, and it is huge.  

Therefore, the encryption algorithm has a very large key space to withstand all kinds of 
brute force attacks. 

Also, by this process we reduced the number of bits used in the old cryptosystem 
because a practical implementation must been contain at least 200 terms and each term should 
be 200 bits. 
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