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Abstract 
 
The Vigenère cipher is a system that allows us to substitute a character with another character 
that is not always the same. The disadvantage of this system is the weak length of the 
encryption key, which is usually less than the length of the text to be encrypted, and can 
unfortunately be discovered by using Kasiski's and coincidence index methods.  
To resolve this problem, we propose in this work to use a dynamic generalization of the 
Vigénère table based on the logistics map to generate a random keys as long as the length of 
the text. 
 
Keywords: Vigénère cipher; Kasiski Test; Chaotic Theory; Logistic Map; Sensibility of Initials 
Conditions. 
 
 
Introduction 
 
Cryptography has experienced a real explosion with the development of computer systems, 
moving from a traditional and confidential era to very high-tech systems requiring significant 
computing power. Several studies (Kocarev, 2001; Luca, 2006) have shown that chaotic 
signals can become the alterative of several common cryptographic systems due to their 
random behavior, their high sensitivity to initial conditions. 

In recent years, several studies have been done on the Vigenère cipher (Singh, 2012; 
Rahmani et al., 2012; Ali and Sarhan, 2014; Al-Ahwal and Farid, 2015; Aliyu and Oliniyan, 
2016; Wilson and Garcia, 2006; Saputra and Hasibuan, 2017; Subandi et al., 2017), which is a 
polyalphabetic encryption system and this is substitution cipher (Schneier, 1996), the same 
letter of the plaintext message may, depending on its position in the latter, be replaced by 
different letters. 

In this work, we will propose a dynamic generalization of the Vigénère table of dimension 
of 256x256 boxes, the values are modulo 256. These values correspond to the integer values 
of the ASCII code, if we use them in the encryption of the texts. The dynamism of the Vigénère 
table is based on the logistics map (Devaney, 1989; Devaney, 1992; Pareek et al., 2006). 
 
 
Vigénère Cipher 
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The Vigenère cipher, (Vigenère Tableau, Vigenère Table or Vigenère Square), uses a square 
matrix of 26 lines and 26 columns, each box of a row or each box of a column contains a letter 
of the Latin alphabet. The boxes in the first row (respectively column) contain the letters of the 
alphabet in increasing order (from A to Z). For the second row (respectively column), we start 
with the second letter of the alphabet (B) then by ascending order (from B to Z) and finally A. 
We do the same for all lines (respectively column), at each ith line (respectively column) we start 
with the ith letter of the alphabet and then in ascending and circular order until the (i-1)th letter of 
the alphabet (Figure 1a). 
 

 
Figure 1a. Vigenère Table 

 
In addition to the plaintext, the Vigenère cipher also requires a keyword, which is 

repeated so that the total length is equal to that of the plaintext. It is agreed in the Vigénère 
cipher to use letters to uppercase and to encrypt with blocks of 5 letters. 

For example, suppose the plaintext is MEDITERRANEAN and the keyword is HELP-ME. 
Then, the keyword must be repeated. 

 
Plaintext:    M E D I T | E R R A N | E A N 
Key:           H E L P M | E H E L P| M E H 
Ciphertext: T I  O X F  |  I Y V L C| Q E U 
 

To encrypt, we write the text to be encrypted in a first line and in the second line, we write 
under each letter of the plaintext a letter of the keyword.  
Figure 1a is used to encrypt the data (the row index is corresponding to the keyword letter, and 
the column index is corresponding to the plaintext letter). For example, the first letter in the 
plaintext is M and its corresponding keyword letter is H. This means that the row of H and the 
column of M are used, and the entry T at the intersection is the encrypted result (Figure 1b). 
Repeating this process until all plaintext letters are processed. 
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Figure 1b. Vigenère Table 

 
To decipher, we take the letter line of the key that corresponds to the cryptogram to be 

deciphered, and we look at the column that carries this cryptogram, this column is the 
deciphered letter. 

For example, to decrypt the first letter T in the ciphertext, we find the corresponding letter 
H in the keyword. Then, the row of H is used to find the corresponding letter T and the column 
that contains T provides the plaintext letter M (see the above figure 1.b). Consider the fifth letter 
F in the ciphertext. This letter corresponds to the keyword letter M and row C is used to find F. 
Since F is on column M, the corresponding plaintext letter is C. 

Mathematically, we identify the letters of the alphabet with numbers from 0 to 25 (A = 0, B 
= 1 ...). The encryption and decryption operations are, for each letter, those of the Caesar 
figure. By designating the ith letter of the plaintext by Text[i], the ith of the encrypted by C[i], and 
the ith letter of the key, repeated enough times, by K[i], it is formalized by: 

 
C[i] = (Texte[i] + K[i]) modulo 26            (1) 

 
where, x modulo 26 designates the remainder of the integer division of x by 26. For encryption 
it is sufficient to add the two letters and then subtract 26 if the result exceeds 26. 
 

Texte[i] = (C[i] - K[i]) modulo 26             (2) 
 

The decryption is an operation identical to that of the encryption, for that, it suffices to 
subtract the value of the key from the value of the cryptogram and, to add 26 if the result is 
negative: 

Clé'[i] = 26 - Clé[i]                  (3) 
 
 
Logistic Map 
 
Logistics map (Devaney, 1989; Devaney 1992) is a well-known dynamic in non-linear systems 
theory, defined by equation (4): 

yk+1 = r xk (1-xk)                   (4) 
 

It gives a perfect explanation of a dynamic system behavior. This system was developed 
by Prof. Pierre François Verhulst (1845) to measure the evolution of a population in limited 
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environment, later used in 1976 by the biologist Robert May to study the evolution of insect 
population: 
a. yk+1: Generation in the future that is proportional to xk. 
b. xk:  Previous generation. 
c. r: Positive constant incorporates all factors related to reproductive, successful overwintering 

eggs for example, etc. 
In order to study this dynamic system and some asymptotic individuals’ models, the first 

thing to do is to draw the parabolic graph y= r.x (1-x), and the diagonal y=x.  The operation that 
we will follow to draw the iterative form yk+1 according to xk is simply summarized as following: 
a. Starting from an initial value x0 of the x-axis, we reach the function with a vertical; the 

function takes the value y1=r.x0 (1-x0), 
b. From horizontal y1= r.x0 (1-x0) of the previous point, we join the line y = x; 
c. We represent the abscissa of the intersection with the vertical line x=x0; we have y1 = x1 
d. From the x1 value of the x-axis, we reach the function with a vertical; the function takes the 

value y2= r.x1 (1-x1); and so on. 
We take r = 3.9 and, x0=0.01 for logistics map, the previous operations for 100 iterations 

are represented in Figure 2a and Figure 2b. 
 

 
Figure 2a. Evolution of yk in function of xk 

 

Figure 3 shows two signals generated from the chaotic logistic map (r = 3.9), one with an 
initial condition x0= 0.1 and the other very close with x0=0.099999999. We note that a very 
small error on the knowledge of the initial state x0 in the space of the phases will be quickly 
amplified and gives us two widely different signals. Quantitatively, the growth of error is locally 
exponential for highly chaotic systems (sensitivity to initial conditions). 
 

 
Figure 2b. Chaotic regime in function of k 

 

 
Figure 3. Sensitivity to initial conditions 
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It should be noted that the error on the initial conditions in this case is 10−15 and this is 
the smallest value because Matlab works with only 52 bits but the system can be sensitive to 

values smaller than 10−15 depending on the work environment. 
 

 
New system of generalization of Vigénère table with Chaotic Key 
 
The proposed system works in the following steps: 
a. We generate data from the logistic map of equation 3a, with x0 = 0.2; r = 3.99;  
b. We begin the identification of the data starting from a value N (97 for our result). 
c. Then, we take inspiration from the generator Ali-Pacha et al. (2007) to realize a 

generalization of the table of Vigenere with integer values of ASCII code. We multiply each 
value by a scalar M; like an amplifier type to allow the decimal parts to be submerged (in 
this case M = 1000000). 

d. We take the integer parts of these real values, and after the modulo 256 is applied to these 
parts. 
 

y(i)=Logistic_map (x0, r, N);                    (5a) 
z(i)=floor(mod(y*M, 256));              (5b) 

 
If, we assume that an image M is square and 256 lines and 256 columns, can be 

represented by a 256x256 pixels dimension vector. We will have the generalization of the 
vigénère algorithm adapted to the images, from equation (5), as follows: 

 
C[i] = (M[i] + z[i]) modulo 256           (6a) 
M[i] = (C[i] - z[i]) modulo 256             (6b) 

 
Length of the secrete Key of the cryptosystem. 
The size of the encryption key space is the total number of different values that can be used in 
the encryption process. In the proposed algorithm, the secret key field is set as follows:  
 

𝑆𝑇={𝑥0,r ,𝑁,M}              (7) 
 

where 𝑥0, r, are double precision numbers and 𝑁 and M are integer constants (starting index 
value).  

If the calculating precision of: x0, r, is 10-15, and 𝑁 ∈ [1, 1000]. Therefore, the key space is 

larger, than 1015×1015×103×106 = 1039(𝑎𝑣𝑒𝑐103≈210) in this case, we will have a key field of the 
order of 2130, and it is huge. Therefore, the encryption algorithm has a very large key space to 
withstand all kinds of brute force attacks.  

 
Cryptanalysis 
The Vigenère cipher was broken by the Prussian major Friedrich Kasiski who published in 1863 
an effective method (Kasiski test) to determine the size of the key, by identifying the repetition 
of certain motifs in the encrypted message.  
Statistics based on the coincidence index, discovered in the twentieth century, are even more 
effective in breaking the Vigenère cipher. 
a. Coincidence Index Method 
Note that all spaced letters of k (where k is the length of the key) are shifted by the same 
constant. It is therefore sufficient to perform a frequency analysis for each of the sub-texts. The 
coincidence index represents the probability that two letters randomly selected in a text are 
identical. For the English language, the TH is approximately equal to 0.00302, this index does 
not vary if the text is coded with a monoalphabetic substitution. By testing different key lengths, 
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and keeping the lengths for which the TH is closest to 0.00302, we can deduce the length of the 
key. 
b. Kasiski test method 
If we know the number of symbols in the key, it becomes possible to proceed by frequency 
analysis on each of the sub-texts determined by selecting letters of the clear message at 
intervals the length of the key (as many sub-texts as the length of the key). This is the well-
known attack on mono-alphabetic ciphers. Kasiski's method is to look for repetitions in the 
ciphertext. Usually we look for repetitions of minimum 3 letters. The idea is that the same 
sequence of letters of the plain text has been encrypted with the same part of the key and 
therefore the same sequence of letters has been repeated in the ciphertext. By noting the 
number of letters separating the redundant sequences, one can obtain a multiple of the length 
of the key. 

For example, a repeating pattern is separated by 24 characters and another pattern 
separated by 16 characters. We search the common divisors, the key can be of lengths 1, 2, 4 
or 8. 
c. Cryptanalysis in our case 
In our case, cryptanalysis is difficult; the two previous methods cannot apply. On the one hand, 
the length of the key is as long as the text to be encrypted; on the other hand, the key is 
random. With a few precautions, this system can be identified with the one-time pad (OTP), 
which is an ideal encryption system. 
 
 
Results and Interpretations 
 
We use BMP images (Lena) in our application of this new crypto system. We take as the fixed 
values of the encryption key:  r = 3.9,  x0=0.95, with N=97 value starting of logistics map. 
 
Histogram Images 
For a monochrome image, that is to say, a single component, the histogram is defined as a 
discrete function that maps each value of the number of pixel intensity taking this value. The 
determination of the histogram is carried out by counting the number of pixel intensity for each 
of the image. The histogram can then be seen as a (Chen et al., 2004) probability density. 

 

  
 

Figure 4. Image of Lena in plaintext and its histogram 
 

  
 

Figure 5. Image Lena encrypted and its histogram 
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Referring to the results obtained, we can clearly see that the simple image differs 
significantly from the corresponding encrypted. Moreover, the histogram of the encrypted image 
is fairly uniform which makes it difficult to extract the statistical nature of the simple image 
pixels. Histograms of plaintext and encrypted images of Lena showed that the proposed crypto 
system works correctly. It is found that: 
a. Encryption changes the frequency of pixels with the same probability distribution for the 

entire image. 
b. The pixels are highly correlated in the clear image in the encryption cancels any correlation 

between them in the encrypted image. 
c. The image after encryption has become noisy and do not contain visible information that 

shows on the histogram of the two images is no information in the clear picture. 
 
Correlation between two adjacent pixels 
To test the correlation between two adjacent pixels horizontally, vertically and diagonally to the 
image is calculated correlation coefficient for a sequence of adjacent pixels (Chen et al., 2004. 
Let be x and y are the adjacent pixels. We assume that we have the following tables of values: 
X(x1, …, xn) and Y(y1, …, yn)  and for each of the two series. A measure of this correlation is 
obtained by calculating the linear correlation coefficient of Bravais-Pearson. To know the 
correlation coefficient linking these two series, we apply the following formula (Chen et al., 
2004): 

 

𝐶𝑜𝑒𝑓(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋,𝑌)

√𝐷(𝑋).√𝐷𝑌
                (8) 

The covariance between x and y is given as follows: 
 

𝑐𝑜𝑣(𝑋, 𝑌) =
1

𝑁
∑ ((𝑋𝑖 − 𝐸(𝑋)). (𝑌𝑖 − 𝐸(𝑌)))𝑁
𝑖=1        (9) 

The average of X: 

𝐸(𝑋) =
1

𝑁
∑ 𝑋𝑖
𝑁
𝑖=1             (10a) 

The average of Y:  

𝐸(𝑌) =
1

𝑁
∑ 𝑌𝑖
𝑁
𝑖=1            (10b) 

The standard deviation of X is 

𝐷(𝑋) =
1

𝑁
∑ (𝑋𝑖 − 𝐸(𝑋))2𝑁
𝑖=1            (11a) 

The standard deviation of Y is 

𝐷(𝑌) =
1

𝑁
∑ (𝑌𝑖 − 𝐸(𝑌))2𝑁
𝑖=1            (11b) 

 
The correlation coefficient is between -1 and 1. The intermediate values tell us about the 

degree of linear dependence between the two variables. The correlation between the variables 
is strong, if the coefficient is close to -1 or 1; the term "highly correlated" is simply used to 
qualify the two variables. The correlation coefficient is close to 0 it means that the variables are 
not correlated. 

We will be studying the distribution of 1,000 adjacent pixels that are randomly selected 
from the image clear and encrypted with the "randsrc". The "randsrc" randsrc (m, n, [symbols]) 
generates a matrix of size MxN equiprobable symbols, and obtaining a distribution of adjacent 
pixels. 
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Figure 6. Distribution of adjacent pixels of the plaintext 

 
Figure 7. Distribution of adjacent pixels of the encrypted image 

 
As an example, we found the following values for the horizontal correlation coefficient of 

plaintext image of Lena is (0.95247) and for her encrypted image is equal to (0.0037). Figures 6 
and 7, which are three in number from left to right as follows: Correlation of horizontal pixels, 
vertical pixels Correlation, Correlation diagonal pixels:  
a. The adjacent pixels are highly correlated on the encryption created a major mess. 
b. The autocorrelation coefficients close to 1 for the images clear and encryption cancels 

proving the proper functioning of our system. 
c. In addition, it is clear that in the plaintext image several lines can adjust to this cloud of 

points. Nevertheless, among all these lines we can retain one that enjoys a remarkable 
property giving rise to a linear line; affine form (Y = aX + b, the coefficient a, represent the 
correlation). 

 
Entropy test 
The average amount of information (Chen et al., 2004) associated with each symbol without 
memory source is defined as the expected value (denoted by E {.}) Specific information 
provided by the observation of each of the possible symbols {S1, ..., Sn}: 

       (11) 
 
This is the information that would be obtained in average by observing the parallel 

symbols output from very large number of identical source without memory. As the source is 
stationary and without memory, it is also the average information per symbol, which would be 
obtained by observing a series of very long symbol emitted by a single source. 

One found the following values for the entropy of plaintext image of Lena is (7.4651) and 
for her encrypted image is equal to (7.9965). It is found that the entropy of the images 
increases to almost 8 bits showing that encryption creates a high level of disorder. 
 
 
Conclusion 
 
By making the generalization of the Vigenere table integer values of ASCII code, to produce 
keys as long as the text to be encrypted, we obtain the Verman system (one-time pad). 
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In our crypto-system, we use a polyalphabetic substitution of Vigénère type; where the 
Vigénère encryption key is produced by the logistics map (random values) and, it is the same 
size as the plaintext to be encrypted, in other words, it is a substitution of type of a one-time 
pad (OTP).  

The one-time pad (OTP) is an encryption technique that cannot be cracked, but requires 
the use of a one-time pre-shared key the same size as, or longer than, the message is being 
sent. In this technique, a plaintext is x-ored with a random secret key. Therefore, it is an ideal 
encryption. 
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