
Malaysian Journal of Computing and Applied Mathematics 2019, Vol 2(2): 8-13 
©Universiti Sultan Zainal Abidin 
(Online)

 

8 

 

 

MALAYSIAN JOURNAL OF COMPUTING AND APPLIED 
MATHEMATICS 

 

 

On Solving Classes of Differential Equations with Applications 
 

*S. Al-Ahmad a, I. M. Sulaiman a, R. AlAhmad b,c, M. Mamat a and M. Al-Ahmad d 
 

a Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia  
     b Department of Mathematics, Yarmouk University, Irbid, Jordan.  

c Faculty of Engineering, Higher colleges of technology, Ras Alkhaimah, UAE 
               d Faculty of Science and Technology Information, Irbid National University, Irbid, Jordan 
 

*Corresponding author: alahmad.shadi@yahoo.com 
 

Received: 07/06/2019, Accepted: 19/10/2019 

 
 
Abstract 

 
Given the difficultly of applying the methods of variation of parameters and undetermined coefficients 
for many classes of differential equations and inspiration of the role of the Linear Differential Operators 
to solve classes of Differential equations. In this paper, we introduce the nested factorization technique 
for solving classes of Differential equations using the basic differentiation and integration approach. 
Numerical examples with encouraging results have been presented to illustrate the efficiency of the 
method. 
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Introduction 
 
Factorization of some operators in calculus such as the differential operators are strong 
computer algebra instrument for ordinary linear differential equations. This approach can be  
used for computing solutions and studying the structure of the differential (Van Hoeij, 1997). This 
paper is structured as follow. Section 2 discusses brief over-view and some fundamental rules of 
differential operator. In section 3, we present the nested factorization of the differential operator. 
Numerical example of well-known benchmark problem is presented in section 4. Finally, we 
present the conclusion and discussion in section 5. 
 
 
Preliminaries 
 
Linear differential operators with constant coefficients 
 
The general linear ordinary differential equation (ODE) with constant coefficients of order n can 
be written as  

 

𝑦(𝑛) + 𝑎1𝑦
(𝑛−1) + 𝑎2𝑦

(𝑛−2)+. . . . +𝑎𝑛𝑦 = 𝑟(𝑥),  𝑎𝑖 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠                                      (1) 
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by means of the differentiation operator D, (2.1) reduces to 
 

(𝐷𝑛 + 𝑎1𝐷
𝑛−1 + 𝑎2𝐷

𝑛−2+. . . . +𝑎𝑛)𝑦 = 𝑟(𝑥), 𝑎𝑖 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠                                          (2) 
 

which is further simplified as 

𝑝(𝐷)𝑦 = 𝑟(𝑥) 
 

where 
 

𝑝(𝐷) = 𝐷𝑛 + 𝑎1𝐷
𝑛−1 + 𝑎2𝐷

𝑛−2+. . . . +𝑎𝑛, 𝑎𝑖 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠                                                        (3) 

 
We call a polynomial differential operator with constant coefficients (Mattuck, 2006). 
 
Operator rules 
 
In this research, the differential operators will be applied based on numerous rules they satisfy. 
We begin by assuming that the functions involved are sufficiently differentiable. This would make 
it easy to apply the operators. 
(i) Sum rule 
Suppose 𝑝(𝐷) and 𝑞(𝐷) are polynomial operators, then for any (sufficiently differentiable) 

function 𝑢,  

[𝑝(𝐷) + 𝑞(𝐷)]𝑢 = 𝑝(𝐷)𝑢 + 𝑞(𝐷)𝑢 

 
(ii) Linearity rule 
For any constant 𝑐𝑖 and functions 𝑢1 and 𝑢2. Then,  
 

𝑝(𝐷)(𝑐1𝑢1 + 𝑐2𝑢2) = 𝑐1𝑝(𝐷)𝑢1 + 𝑐2𝑝(𝐷)𝑢2 
 

(iii) Multiplication rule 
 
If 𝑝(𝐷) = 𝑔(𝐷)ℎ(𝐷), as polynomials in 𝐷, then  
 

𝑝(𝐷)𝑢 = 𝑔(𝐷)(ℎ(𝐷)𝑢). 
 
(iv) Substitution rule 

𝑝(𝐷)𝑒𝑎𝑥 = 𝑝(𝑎)𝑒𝑎𝑥. 
 
(v) The exponential-shift rule 

𝑝(𝐷)𝑒𝑎𝑥𝑢 = 𝑒𝑎𝑥𝑝(𝐷 + 𝑎)𝑢. 
 
For more properties of the differential operator and their applications, please refer to (Mattuck, 
2006; Van Hoeij, 1997).                                                                                 
 
The Nested Factorization of the Difference Operator 
 
It has always been very difficult to find the general solution of the equation. 

 

𝑦(4) + 4𝑦′′′ + 6𝑦′′ + 4𝑦′ + 𝑦 = 255024𝑥20𝑒−𝑥 
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using the classical methods such as the method of variation of parameters and undetermined 
coefficients. However, it is obvious that the above equation is equivalent to 
  

(𝐷 + 1)4𝑦 = 𝑥5𝑒−𝑥 
 
From the above, we defined the nested factorization as 

 

𝑒−𝑥𝐷4(𝑒𝑥𝑦(𝑥)) = 𝑥20𝑒−𝑥 
This implies  

𝑦(𝑥) = 𝑒−𝑥(𝑥24 + 𝑐1𝑥
3 + 𝑐2𝑥

2 + 𝑐3𝑥 + 𝑐4). 
 

Students with basic background can use this approach because we solve the differential 
equation with basic differentiation and integration. For more properties of the factorization of the 
differential operator and their applications, please refer to (AlAhmad, Al-Jararha, & Almefleh, 
2014; Arfken, 1985; Boyce, DiPrima, & Meade, 2017; Hand & Finch, 1998; Kreyszig, 1999; 
Penrose & Jorgensen, 2006; Van Hoeij, 1997; Zwillinger, 1998). 
 
The convergence analysis of the procedure follows from the following Lemma.  
 
Lemma 1 

Let 𝑝, 𝑞 ∈ 𝐶1(𝑅). The differential operator satisfies 
 

(𝐷 + 𝑝)(𝐷 + 𝑞)𝑢 = 𝑒−∫𝑝𝐷(𝑒−∫(𝑝−𝑞)𝐷(𝑒∫𝑞𝑢)). 
 
Proof. Let   𝑤 = (𝐷 + 𝑞)𝑢                                                                                                           (4) 
And 𝑣 = (𝐷 + 𝑝)(𝐷 + 𝑞)𝑢,  
then 

𝑣 = (𝐷 + 𝑝)𝑤.                                                                                                                  (5) 

Multiplying both sides of (5) by 𝑒∫𝑝 gives  
 

 𝑒∫𝑝𝑣 = 𝑒∫𝑝(𝐷 + 𝑝)𝑤 = 𝑒∫𝑝𝑤′ + 𝑝𝑒∫𝑝𝑤 = 𝐷(𝑒∫𝑝𝑤). 
Hence, 

𝑣 = 𝑒−∫𝑝𝐷(𝑒∫𝑝𝑤). 
This proof and (4) gives;  

𝑤 = 𝑒−∫𝑞𝐷(𝑒∫𝑞𝑢). 
Consequently, 

(𝐷 + 𝑝)(𝐷 + 𝑞)𝑢 = 𝑣 = 𝑒−∫𝑝𝐷(𝑒∫𝑝𝑒−∫𝑞𝐷(𝑒∫𝑞𝑢)) = 𝑒−∫𝑝𝐷(𝑒∫ (𝑝−𝑞)𝐷(𝑒∫𝑞𝑢)). 
 
Corollary 1 

Let 𝑝 ∈ 𝐶1(𝑅). The differential operator satisfies  
 

(𝐷 + 𝑝)2𝑢 = 𝑒−∫𝑝𝐷2(𝑒∫𝑞𝑢). 
 
Proof. Apply Lemma 1 with 𝑝 = 𝑞.  
 
 
Theorem 1 

Let 𝑝1, 𝑝2, . . . , 𝑝𝑛 ∈ 𝐶
1(𝑅). The differential operator satisfies  
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(𝐷 + 𝑝1)(𝐷 + 𝑝2). . . (𝐷 + 𝑝𝑛)𝑢 = 𝑒
−∫𝑝1𝐷(𝑒−∫ (𝑝1−𝑝2)𝐷(𝑒−∫ (𝑝2−𝑝3)). . . 𝐷(𝑒−∫(𝑝𝑛−1−𝑝𝑛)𝐷(𝑒∫𝑝𝑛𝑢)). 

 
Proof. The proof by induction. Lemma 1 proves the case of 𝑛 = 2. 
 
Assume the statement is true for 𝑛 = 𝑘 and we prove it for 𝑛 = 𝑘 + 1.  
Let  𝑤 = (𝐷 + 𝑝𝑘+1)𝑢,                                                                                                                (6) 
  

multiply both sides by 𝑒∫𝑝𝑘+1 to get  
 

𝑤 = 𝑒−∫𝑝𝑘+1𝐷(𝑒∫𝑝𝑘+1𝑢).                                                                                              (7) 

  
Also, by the induction assumption for 𝑛 = 𝑘, we have  
 

(𝐷 + 𝑝1)(𝐷 + 𝑝2). . . (𝐷 + 𝑝𝑛)𝑤 = 𝑒
−∫𝑝1𝐷(𝑒−∫ (𝑝1−𝑝2)𝐷(𝑒−∫(𝑝2−𝑝3)). . . 𝐷(𝑒−∫(𝑝𝑛−1−𝑝𝑛)𝐷(𝑒∫𝑝𝑛𝑤)). 

(8)                                      
 
Substituting equation (6) into the left side of equation (8) and substituting equation (7) into the 
right side of equation (9) give the result.  
 
Corollary 2   

Let 𝑝 ∈ 𝐶1(𝑅). The differential operator satisfies (𝐷 + 𝑝)𝑛𝑢 = 𝑒−∫𝑝𝐷𝑛(𝑒∫𝑝𝑢). 
 
Proof.  

Apply Theorem 1 with 𝑝1 = 𝑝2 =. . . = 𝑝𝑛.  
 
Lemma 2   

Let 𝑝 ∈ 𝑆(𝑁). The forward shift and the forward difference operators satisfy  
 

((𝐸 − 𝑝)𝑢)(𝑛) = (𝐸𝑤𝑝)(𝑛)(𝛥(
𝑢

𝑤𝑝
))(𝑛), 

where      

𝑤𝑝(𝑛) = ∏
𝑛−1
𝑗=1 𝑝(𝑗). 

 
Proof.  
Let 𝑆(𝑁) be the set of the real valued sequence defined on the natural number set 𝑁. Define the 

forward shift operator 𝐸 and the forward difference operator Δ as 
  

(𝐸𝑢)(𝑛) = 𝑢(𝑛 + 1) 
And 

(Δ𝑢)(𝑛) = 𝑢(𝑛 + 1) − 𝑢(𝑛). 
 
Set  

((𝐸 − 𝑝)𝑢)(𝑛) = 𝑣(𝑛), 
 
this implies that  

𝑢(𝑛 + 1) − 𝑝(𝑛)𝑢(𝑛) = 𝑣(𝑛). 
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Now, dividing by ∏𝑛𝑗=1 𝑝(𝑗) gives  

 
𝑢(𝑛 + 1)

∏𝑛𝑗=1 𝑝(𝑗)
−

𝑢(𝑛)

∏𝑛−1𝑗=1 𝑝(𝑗)
=

𝑣(𝑛)

∏𝑛𝑗=1 𝑝(𝑗)
. 

 
Therefore,  

(Δ(
𝑢

𝑤𝑝
))(𝑛) =

𝑣(𝑛)

𝑤𝑝(𝑛 + 1)
. 

Hence,  

((𝐸 − 𝑝)𝑢)(𝑛) = 𝑣(𝑛) = 𝑤𝑝(𝑛 + 1)(Δ(
𝑢

𝑤𝑝
))(𝑛). 

Lemma 3   
Let 𝑝, 𝑞 ∈ 𝑆(𝑁). The forward shift and the forward difference operators satisfy 
 

((𝐸 − 𝑝)(𝐸 − 𝑞)𝑢)(𝑛) =

(

 
 
(𝐸𝑤𝑝)(∆(

(𝐸𝑤𝑞)∆(
𝑢
𝑤𝑝
)

𝑤𝑝
)

)

 
 
(𝑛). 

Proof. Set  

((𝐸 − 𝑝)(𝐸 − 𝑞)𝑢)(𝑛) = (𝐸𝑤𝑝)(𝑛)(∆(
(𝐸 − 𝑞)𝑢

𝑤𝑝
))(𝑛) =

(

 
 
(𝐸𝑤𝑝)(∆(

(𝐸𝑤𝑞)∆(
𝑢
𝑤𝑝
)

𝑤𝑝
)

)

 
 
(𝑛). 

 
Numerical Results 
 
Example 1  
Consider the differential equation  
 

𝑦′′ + (𝑎 + 𝑥)𝑦′ + (1 + 𝑎𝑥)𝑦 = 𝑒−𝑎𝑥; 𝑦(0) = 0, 𝑦′(0) = −𝑎. 
 
This equation is equivalent to 

(𝐷 + 𝑎)(𝐷 + 𝑥)𝑦 = 𝑒−𝑎𝑥 
  
which is by Theorem 1 is rewritten as  
 

𝑒−𝑎𝑥𝐷(𝑒−∫(𝑎−𝑥)𝐷(𝑒∫𝑥𝑦)) = 𝑒−𝑎𝑥. 
Therefore,  
 

𝐷(𝑒−𝑎𝑥−𝑥
2/2)𝐷(𝑒𝑥

2/2𝑦)) = 1. 

Hence,  
 

𝐷(𝑒𝑥
2/2𝑦) = (𝑥 + 𝑐1)𝑒

𝑎𝑥+𝑥2/2 
 
Using the initial conditions, we conclude that 𝑐1 = 𝑎. Also,  integrate the initial conditions to get 

𝑦(𝑥) = 𝑒𝑎𝑥 − 𝑒−𝑥
2/2 is the solution of this initial value problem. 
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Example 2 
Consider the difference equation, we find 𝑢 ∈ 𝑆(𝑁) satisfies  
 

𝑢(𝑛 + 4) + 8𝑢(𝑛 + 3) + 24𝑢(𝑛 + 2) + 32𝑢(𝑛 + 1) + 16𝑢(𝑛) = 255024𝑛(20)(−2)𝑛, 
Where 

𝑛(𝑟) = 𝑛(𝑛 − 1)(𝑛 − 2). . . (𝑛 − 𝑟 + 1). 
 This equation is re-written as  

((𝐸 + 2)4𝑢)(𝑛) = 255024𝑛(20)(−2)𝑛. 
 
This equation is written in the nested factorization as 
 

(−2)𝑛∆4 (
𝑢(𝑛)

(−2)𝑛
) = 255024𝑛(20)(−2)𝑛. 

This gives 

`∆4 (
𝑢(𝑛)

(−2)𝑛
) = 255024𝑛(20), 

which gives  
 

𝑢(𝑛) = (−2)𝑛(𝑛(24) + 𝑐1𝑛
(3) + 𝑐2𝑛

(2) + 𝑐3𝑛 + 𝑐4) 
 
is the general solution for the difference equation.  
 
Conclusion and Discussion 

 
The nested factorization of differential operator is an important tool for solving differential 
equations. One of the tools to be used, especially for higher order differential equations when 
methods of undetermined coefficients and variation of parameters are difficult to apply. Thus, in 
this paper, we investigated the performance of the nested factorization of differential operator, 
studying their efficiency on some problems. Numerical result presented illustrate the practical 
performance of the proposed scheme. 
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