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Abstract: The aim of the present work is the hardware implementation of the elliptic curve Diffie-
Hellman (ECDH) key exchange protocol on a reconfigurable circuit of type FPGA at the register-
transfer level (RTL). Compared to the standard Diffie- Hellman (DH), based on exponentiation in a 
finite field, ECDH is known to provide equivalent level of security with lower number of bits used. 
Reduced bit usage implies less power and logic area are required to implement this cryptographic 
scheme. This is particularly important in secure embedded system, where a high level of security is 
required, but with low power consumption. The results show that ECDH can be implemented on 
FPGA with convincing performances in comparison with other published works. 
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1. INTRODUCTION 
 
Cryptography has become nowadays a vital tool to ensure the security of the vertiginous growth in the 
number of connected device via internet. Secret key cryptography is the most popular approach to ensure 
the confidentiality over a computer network. In fact, the majority of tools provided for this purpose (e.g. 
Secure Sockets Layer (SSL), Secure Shell (SSH), Ipsec, etc.) rely on the use of symmetric ciphering 
algorithm like Advanced Encryption standard (AES). This is due to the high speed and the reduced time of 
ciphering of such algorithm in comparison with their asymmetric counterparts. 

The main drawback of the symmetric cryptography is key sharing. For instance, exchanging the key 
over a public channel would compromise the whole security of the cryptosystem. Traditionally, secure 
encrypted communication between two parties required that they first exchange keys by some secure 
physical channel, such as paper key lists transported by a trusted courier. In 1976, Whitfield Diffie and Martin 
Hellman published a paper [1] where they presented their scheme, named after them Diffie-Hellman (DH), 
for securely exchanging cryptographic keys over a public channel. Elliptic-curve Diffie-Hellman (ECDH) is 
an anonymous key agreement protocol that allows two parties, each having an elliptic-curve public-private 
key pair, to establish a shared secret over an insecure channel. It is a variant of the Diffie-Hellman protocol 
using elliptic-curve cryptography (ECC). It was first introduced in 1986 by Victor S. Miller [2]. 

The use of Field Programmable Gates Arrays (FPGA) for cryptographic applications is highly attractive, 
especially for embedded secure systems where high performances are required at low power consumption. 
Therefore, several FPGA- based efficient ECC hardware architectures and elliptic curve cryptographic 
processors have been presented in the literature ( [3], [4], [5] and [6]). The aim of the presented work is the 
implementation, in an efficient way, of a high performance version of ECDH in the Xilinx Virtex 6 FPGA over 
the finite binary Galois Field GF (2163). 

In order to give a clear presentation of our work, this paper is structured as following; After an 
introduction, a brief review of the mathematical background of ECC is given. Then, we present the 
cryptographic scheme for the ECDH key exchange protocol. Then, After that we present the proposed 
architecture of ECDH to be implemented in FPGA. We terminate this paper by giving the results of the 
implementation by comparing it with existing implementations in literature.  
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2. RELATED WORKS 
 
Several FPGA-based efficient ECC hardware architectures and elliptic curve cryptographic processors have 
been presented in the literature. In [7], Ghanmy proposed ECC processor over GF (2163) on an FPGA 
platform for wireless sensor networks (WSN). Reaz’s design [5] can perform ECC over GF (2131) and GF 
(2163) on Altera FPGAs. Hasan and Benaissa [6] implemented their ECC processor using the µ- coding 
technique on Xilinx Spartan-3 FPGAs over GF (2131), GF (2163), GF (2283) and GF (2571). An ASIC 
implementa- tion of an elliptic curve crypto-processor over GF (2163) is presented in [8], where they used an 
ASIC CMOS 45 nm technology as a hardware platform. Shieh [9], Park et al. [10] also proposed their ECC 
processor over a binary field using Xilinx FPGAs. 
 
3. ELLIPTIC CURVE ALGEBRA 
 
In a nutshell, an elliptic curve is a cubic bi-dimensional curve defined by the following relation between the 
x and y coordinates of any point on the curve: 
 

y2 + xy = x3 + ax + b (1) 
 

Where a and b are arbitrary parameters that define the specific curve used. For a chosen pair (a, b) we 
can define a group structure on it. To do so we define an internal composition rule which satisfies the 
following three proprieties: Associativity, Identity and Inverse [11]. Even more, if we define a second 
composition rule over the aforementioned group having the same proprieties as the first composition rule, 
we get an algebric structure called Field [11]. More precisely, elliptic curves are defined over a finite field 
called Galois Field. A Galois field denoted normally as GF (q = pm) is said to be a binary field or 
characteristic-two finite field if q = 2m. 

A non-supersingular elliptic curve E over GF (2m) in affine coordinates is the set of solutions to the 
equation 1 where x,y,a,b GF (2m), b = 0. The coefficients a,b specifying an elliptic curve are typically defined 
by the NIST standard. 

The two essential arithmetic procedures defined on the finite field of elliptic curves GF (2m) are: the Point 
Addition (PA) and the Point Doubling (PD). For a given two points P = (x1, y1) and Q = (x2, y2) their PA R 
can be found by: 

 
R(x3, y3) = P (x1, y1) + Q(x2, y2)    (2) 
x3 = λ2 + λ + x1 + x2 + a     (3) 
y3 = λ(x1 + x3) + x3 + y1     (4)  

where λ = (y2 + y1)/(x2 + x1). For PD we use: 
 

R(x3, y3) = 2P (x1, y1)     (5) 
x3 = λ2 + λ + a =  x12 + b/ x12     (6) 
y3 = x12 + λx3 + x3      (7)  

where λ = (x1 + y1/x1). 
 
4. ELLIPTIC CURVE DIFFIE-HELLMAN 
 

The ECDH cryptographic scheme is shown in figure 1 and is given below: 

1) Before starting a communication, Alice and Bob have to get agree, in the public channel, on the 
parameters of the elliptic curve EC and a point P on this curve, i.e: the coefficients a and b from 
equation 1, the characteristic polynomial of the field GF (2m) and the coordinates (x, y) of the point 
P ; 

2) Alice generates a secret random private secret kA; 
3) Then she computes kA

pu = kA  X   P , where     denotes the scalar multiplication in GF (2m) which 
could be achieved by using the two arithmetic procedures PA and PD described in the section III. 

4) Bob executes the same actions 1 and 2 to get KB
pu; 
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5) At this point, Alice and Bob exchange with each other 𝐾𝐴
𝑝𝑢

 and 𝐾𝐵
𝑝𝑢

; 

6) Alice and Bob can now compute the Secret Symetric Key k = kB ∗ k = kB ∗ kA ∗ P . 
The core of ECDH is the scalar multiplication, which computes 𝛼 ∗ 𝑃 using only the arithmetic procedures 
PA and PD, for example: 
 

7 ∗ P = (2P ((2P ) + P )) + P (8) 
 
 
For a given 𝑄 =  𝛼 ∗ 𝑃, the problem of calculating α from the points P and Q is called the discrete logarithm 
problem over the elliptic curve (ECDLP) which is the hard problem underpinning elliptic curve cryptography. 
Despite almost three decades of research, mathematicians still haven’t found an algorithm to solve this 
problem that improves upon 
 

 
 

Fig. 1. ECDH key exchange protocol 
 

the naive approach. In other words, unlike with factoring (Classical DH), based in currently understood 
mathematics, there doesn’t appear to be a shortcut that will help to find α in a reduced time. This means 
that for numbers of the same size, solving ECDLP is significantly harder than factoring. Since a more 
computationally intensive hard problem means a stronger cryptographic system, it follows that elliptic curve 
cryptograms are harder to break than the ones based on modular exponentiation like RSA and DH [12]. 

In 2000, FIPS-2 was recommended with 10 finite fields: 5 prime fields, and 5 binary fields. The binary 
fields are GF (2163), GF (2233), GF (2283), GF (2409) and GF (2571) [13]. Prime fields GF (p) and binary fields 
GF (2m) of similar size are considered to provide almost the same level of security [14]. Table I compares 
symmetric cipher key length, and key lengths for PKC such as RSA, Diffie-Hellman (DH), and ECC (both 
prime and binary fields). It demonstrates that smaller field sizes can be used in ECC than in RSA and DH 
systems at a given security level. ECC is many times more efficient than RSA and DH for either private-key 
operations (such as signature generation and decryption) or public-key operations (such as signature 
verification and encryption). 
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5. PROPOSED ARCHITECTURE 
 
As mentioned before, The core of the ECDH is the scalar multiplication (figure 2), therefore, a high 
importance is given to the proposed FPGA architecture implementing this module. The scalar multiplication 
module contains two main components. Each one of them ensure either the PA or the PD procedures. From 
equations 3, 4, 6 and 7, we can see. 
 
TABLE I COMPARISON OF KEY LENGTH FOR EQUIVALENT SECURITY OF SYMMETRIC-KEY AND 

PUBLIC-KEY CRYPTOGRAPHY [15] 
 

Summytric Key Example Alg RSA and DH GF(p) ECC in GF(2m) 

112 Triple-DES 2048 224 233 

128 AES Small 3072 256 283 

192 AES Medium 8192 384 409 

256 AES Large 15360 521 571 

 
that the operations needed to implement PA and PD are : addition, multiplication, squaring and division. It 
is known that the addition in GF (2m) is equivalent to a simple xor in either hardware or software. For the 
remaining operations, this section gives in details the algorithms and methods used to implement them. It 
is useful to mention that all of the operations are executed using the polynomial representation of elements 
in GF (2m). 
 

 
 

Fig. 2. proposed hardware architecture for ECDH 
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A. Multiplication in GF (2m) 
Multiplication in GF (2m) with the interleaved modular reduction algorithm is a well-known algorithm for 

hardware implementation [16]. It computes the product of two poly- nomials then applies modular reduction, 
and its operation is different from simple integer multiplication. The algorithm 1 describes in details the 
interleaved modular reduction. 

 
B. Squaring in GF (2m) 

Squaring in GF (2m) has less computation complexity than polynomial multiplication because it can be 
achieved by setting a 0 bit between consecutive bits of the operand, as shown in figure 3. 

 
C. Division in GF (2m) 
Division in GF (2m) is the most expensive operation for implementing ECC over a binary field. The quotient 
of two polynomials in GF (2m) can be computed using the binary version of the binary algorithm that is used 
for calculation of 
 
 

Algorithm 1 Multiplication in GF (2m) with interleaved mod- ular reduction 

Input : P (x), Q(x) and f (x)   GF (2m) 
Output : R(x) = P (x)Q(x) mod f (x) Initialization :   Rv  = 0; Pv  =′ 0′&P (x) for 

i = (m 1) to 0 do 

if Q(i) =′ 1′ then 

Rv = Rvx Qv; 

else 

Rv = Rvx; 

end if 

if Rv(m) =′ 1′ then 

Rv = Rv f (x); 
end if end for 

Return R(x); 

 

 
 

Fig. 3. Squaring a binary polynomial P (x) 
 
the great common divider (GCD) for polynomials. The binary algorithm for computing R(x) = P (x)Q−1(x) 
mod f (x) is described in algorithm 2. 
 
6. FPGA IMPLEMENTATION RESULTS AND PERFORMANCE ANALYSIS 
 

This section presents the hardware implementation results of the proposed architecture. We have 
implemented and tested our design on a modern Xilinx Virtex-6 (XC6VLX240T) FPGA. All VHDL modules 
are extensively simulated using both Isim and ModelSim, and synthesized using Xilinx ISE 
14.7 synthesis technologies. The parameters for the elliptic curve used are taken from the NIST standard 
and are given in table II. We choose to work with the irreducible polynomial f (x) = x163 + x7 + x6 + x3 + 1 over 
the field GF (2163). 
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TABLE II NIST-RECOMMENDED ELLIPTIC CURVES OVER GF (2163) [13] 
 

K-163: m = 163, f (x) = x163 + x7 + x6 + x3 + 1, a = b = 1, h = 2 

n=0x 4 00000000 00000000 00020108 A2E0CC0D 99F8A5EF 

x=0x 2 FE13C053 7BBC11AC AA07D793 DE4E6D5E 5C94EEE8 

y=0x 2 89070FB0 5D38FF58 321F2E80 0536D538 CCDAA3D9 

 
A. Implementation of PA and PD 
To implement the PA core we needed to infer a module for multiplication, a module for squaring and another 
one for division, in addition to a Finite State Machine (FSM) 
 

Algorithm 2 Binary algorithm for polynomials division in GF (2m) 

Input : P (x), Q(x) and f (x) GF (2m) 
Output : R(x) = P (x)Q−1(x)  mod f (x) 
Initialization : a = f , b = Qv, c = 0, d = Pv, α = m 
and β = m 1 
while β > 0 do 
if b(0) = 0 then 
b = b << 1; 
d = d/x  mod (f ); 
β = β 1; 
else 
old β = β; 
b = a b << 1; 
d = (c d)/x  mod (f ); 
if α > β then 
β = α 1; α = old β; c = d; 
else 
β = β 1; 
end if end if 
end while 
R(x) = c; 

Return R(x); 

 
for the control of the whole operation. The same modules were inferred to implement the PD core but with 
a different FSM. Result of implementation are given in table III. Useful to notice that the time row in the table 
correspond to the time needed to complete the PA or PD procedure at a frequency of 200 Mhz. 
 

TABLE III RESOURCES UTILIZATION AND PERFORMANCES OF PA AND PD IMPLEMENTATION 
 

 PA PD 

Slice registers 4855 (1%) 4367(1%) 

Slice LUT 2817 (1%) 2661 (1%) 

Max frequency (Mhz) 325 325 

Time (µs) 2.54 3.38 

 
 
B. Implementation of the scalar multiplication core 
Using PA and PD module, we have succeeded to implement the scalar multiplication core. The proposed 
design contains a PA module and PD module which are controlled by an FSM. Table IV summarizes the 
results of the scalar multiplication core implementation in comparison with a recent work [11], where the 
authors implemented another architecture for the scalar multiplication module over Binary Field GF (2163). 
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Worth to mention that the FPGA used in [11] is more modern and possibly offers a higher work frequency. 
Nevertheless, as shown in Table IV our design takes less time to compute the scalar multiplication 
 

TABLE IV SCALAR MULTIPLICATION RESOURCES UTILIZATION AND PERFORMANCES : 
COMPARAISON BETWEEN OUR WORK AND [11] 

 

 Our work Hossain et al. [11] 

FPGA Virtex-6 Kintex-7 

Slice registers 11217 (3%) 6620(1%) 

Slice LUT 6560 (4%) 7963 (3%) 

Frequency (Mhz) 200 306.48 

Time (µs) 766 1060 

 
 
C. Implementation of ECDH 
With scalar multiplication core ready to use, the implementation of ECDH only needed an appropriate FSM. 
Therefore the resources utilization is approximately equal to the one shown in table IV. 
 
7. CONCLUSIONS 
 
An efficient implementation of ECDH in FPGA has been presented in this work. A high-performance cores 
for computing the PA and PD procedures over GF (2163) were designed. The implementation results have 
shown that our proposed architecture present two main advantages : a low resource utilization which makes 
it ideal for embedded system; and reduced time of calculation which makes this solution a good candidate 
for hardware acceleration of various internet security. 
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