# An Empirical Comparison between Partial Likelihood and Penalized Partial Likelihood Estimators for Semi-parametric Non-proportional Hazards Models with Frailty

### Abstract

This study compared partial likelihood (PL) and penalized partial likelihood (PPL) estimators in non-proportional hazards model with dichotomous time-varying covariates and subject–specific frailty. We considered Gamma and Inverse Gaussian as frailty distributions. The methods were illustrated with a dataset on diabetes. Extensive numerical studies were conducted using Monte Carlo simulations to compare the efficacy of the methods in terms of Relative Bias (RB) and Root Mean Square Error (RMSE). A sensitivity analysis was carried out to assess the power of the estimators under misspecification of frailty distributions. It was found, that PPL estimator generally outperformed PL estimator in all scenarios considered. Efficiency was found to increase with increase in sample size, and decrease with increase in censoring proportion. The sensitivity analysis conducted to assess the effect of frailty misspecification revealed that sample size, proportion of censored observations and the shape of the frailty distribution (log-skewed) severely affected the power of the estimators.

### References

Adeleke, K.A., Abiodun, A. A. & Ipinyomi, R. A. (2015). Semi-Parametric Non-Proportional Hazard Model with Time Varying Covariate. Journal of Modern Applied Statistical, Methods, 14 (2), 68-87.

Andersen, P. K., Klein, J. P., Knudsen, K. & Palacios, R. T. (1997). Estimation of variance in Cox’s regression model with shared gamma frailties. Biometrics, 53, 1475–1484.

Austin, P.C., Mamdani, M.M., van Walraven C. & Tu, JV. (2006). Quantifying the impact of survivor treatment bias in observational studies. Journal of Evaluation in Clinical Practice, 12(6), 601–612.

Austin P.C. (2012). Generating survival times to simulate Cox proportional hazards models with time-varying covariates. Statistics in Medicine, 31, 3946–3958.

Azzalini, A. (1985). A Class of Distributions Which Includes the Normal Ones. Scandinavian Journal of Statistics, 12, 171-178.

Beyersmann, J., Wolkewitz, M. & Schumacher M. (2008). The impact of time-dependent bias in proportional hazards modelling. Statistics in Medicine, 27, 6439–6454.

Cox, D.R. (1972). Regression Models and Life-tables (with discussion). J. Roy. Statist. Soc. Ser. B. 34, 187-220.

Dechateau, L. & Janssen, P.(2004). Penalized Partial Likelihood for Frailties and Smoothing Splines in Time to First Insemination Models for Dairy Cows. Biometrics, 60 (3): 608-614.

Duchateau, L. & Janssen, P. (2008). The frailty model, Springer-Verlag, New York.

Heckman, J. & Singer, B. (1984). A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data. Econometrica, 52 (2), 271-320.

Huang, J. & Harrington , D. (2002). Penalized Partial Regression for Right-censored Data with Bootstrap Selection of the Penalty Parameter. Biometrics, 58, 781- 791.

Hougaard, P. (2000). Analysis of multivariate survival data. Springer, New York 213, 701– 714.

Litière, S. Alonso, A. & Molenberghs, G. (2007). Type I and type II error under random effects misspecification in generalized linear mixed models. Biometrics. 63:1038–1044. [PubMed: 17425642]

Lee, S., Seo, M. H. and Shin, Y. (2011). Testing for threshold effects in regression models. J. Amer. Statist. Assoc. 106, 220-231.

Liwen, L., Wang, H. J. & Zhu, Z. (2014). Testing for Change Points due to a Covariate Threshold in Quantile Regression. Statistica Sinica 24 (2014), 1859-1877 doi:http://dx.doi.org/10.5705/ss.2012.322

McGilchrist, C. A. & Aisbett, C.W. (1991). Regression with frailty in survival analysis, Biometrics, 47, 461-466.

McGilchrist, C. A. (1993). REML estimation for survival models with frailty. Biometrics, 49, 221–225.

Montez-Rath, M., Kapphahn, K., Mathur, M.B., Mitani, A. A., Hendry, D. J. & Desai, M. (2017). Guidelines for Generating Right-Censored Outcomes from a Cox Model Extended to Accommodate Time-Varying Covariates. Journal of Modern Applied Statistical Methods, 16 (1), 86-106. doi: 10.22237/jmasm/1493597100

Munda, M., Rotolo, F. & Legrand. C. (2012). parfm: Parametric Frailty Model in R. Journal of Statistical Software, 15(11), 1-20.

Neuhaus, J.M, Hauck, W.W. & Kalbfleisch, J.D. (1992). The effects of mixture distribution misspecification when fitting mixed-effects logistic models. Biometrika 79:755–762.

Ng, S.K. & McLachlan, G. J. (2003). An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data. Statistics in Medicin, 22:1097 –1111.

Nielsen, G. G., Gill, R. D., Andersen, P. K. & Sørensen, T. I. A. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scand. J. Statist, 19, 25–44.

Pickles, A., & C'rouchley. R. (1995). A Cornparison of Frailty Models for Multivariate Survival Data. Statistics in Medicine. 14, 1447-1461.

Robert, C.P. & Casella G. (2009). Introducing Monte Carlo Methods with R, Springer-Verlag.

Suissa, S. (2007). Immortal time bias in pharmacoepidemiology. American Journal of Epidemiology, 167(4), 492–499.

Therneau, T. M. & Grambsch, P. M. (2000). Modeling Survival Data. Extending the Cox. Model. New York. Springer Verlag.

Therneau, T. M., Grambsch, P. M., & Pankratz, V. S.(2003). Penalized survival models and frailty. Journal of Computational and Graphical Statistics, 12, 156–175.

Vaida, F. & Xu, R. (2000). Proportional hazards model with random effects. Stat. Med, 19, 3309–3324.

Valenta, Z. & Weissfeld, L. (2002). Estimation of the survival function for Gray’s piecewise time-varying coeffients model. Statistics in Medicine, 21, 717–727.

Vaupel, J.W., Manton, K.G. & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16, 349-454.

Verweij, P. J. M. & Houwelingen, H.C.V (1993). Cross-validation in survival analysis. Statistics in Medicine, 12 (24), 2305–2314.

Wienke, A. (2010). Frailty Models in Survival Analysis. Chapman & Hall/CRC, Boca Raton.

Zhou M. (2001). Understanding the Cox regression models with time-change covariates. The American Statistician; 55(2):153{155.DOI:10.1198/000313001750358491.

*Malaysian Journal of Applied Sciences*,

*4*(1), 1-14. Retrieved from https://journal.unisza.edu.my/myjas/index.php/myjas/article/view/124