Comparative Larvicidal Properties and Detoxification Machinery of Bioactive Fractions of Leaf Extracts of Hyptis Suaveolens and Chromolaena Odorata on Anopheles gambiae s.l from North West Nigeria.

  • Abdullahi Abdulkadir Imam Department of Biochemistry, Bayero University, Kano
  • Austin Sheyi Amos Department of Biochemistry, Bayero University Kano-Nigeria
  • Hadiza Abdullahi Department of Biochemistry, Yusuf Maitama Sule University, Kano
  • Aminu Ibrahim Department of Biochemistry, Bayero University Kano-Nigeria

Abstract

Malaria is endemic in Nigeria and the impact of chemical insecticides is being undermined by widespread resistance in mosquito vectors. This calls for development of alternative bio-insecticidal approach. The aim of this work was to determine the active fractions of leaves of Hyptis. suaveolens and Chromolena. odorata with insecticidal potential on the larva of Anopheles gambiae s.l. Leaf extracts of the two plants were screen for phytochemicals and the active fractions were subjected to GC-MS analysis. In addition, the detoxification enzymes (GST, esterase and cytochromes P450) as well Glutathione levels on the susceptible and resistant individuals of the larvae were biochemically assayed. Larval bioassay was carried out by the standard procedure described by WHO. The phytochemicals detected include flavonoids, tannins, saponins, terpenoids, alkaloids, phenols and phlobatannins. Butanol fracton of H. suaveolens displayed higher larvicidal activity (LC50 2167.92ppm) followed by the aqueous fraction (LC50 2613.01ppm). Both butanol and aqueous fractions of C. odorata also displayed larvicidal activities (LC50 3117.97ppm; LC50 3497.27ppm) respectively, but were lower than that observed in Hyptis suaveolens. Biochemical assay of the detoxification enzymes showed significance difference at P <0.05 between the resistant and susceptible larvae for all enzymes. There was however no significant difference in the levels detoxification enzymes in both resistant and susceptible individuals for butanol and aqueous fractions of H. suaveolens when compared with their corresponding fractions of C. odorata at P< 0.05 respectively. The observations recorded in this study showed a promising larvicidal potential of these two plants which if further characterized could offer a promising novel bioinsecticide compound that could substitute the present classes of chemical insecticides used in malaria vector control.

Author Biography

Abdullahi Abdulkadir Imam, Department of Biochemistry, Bayero University, Kano
Senior Lecturer in the Department of Biochemistry, Bayero University Kao-Nigeria

References

Adekunle, I. M., Ajiji, M. R., Adeofun, C. O., & Omoniyi, I. T. 2010. Response of Phytoplankton Species Found in Some Sectors of Nigerian Coastal Waters to Crude Oil in Controlled Ecosystems. International Journal of Environmental Research, 4(1), 65-74.

Ajaiyebu, E.O. (2002). Phytochemical and Antibacterial Activity of Parkiabiglobosa & Parkia Bicolor Leaf Extracts. Africa Journal of Biomedical Research, 5,125-129.

Alhassan, A. J., Sule, M. S., Dangambo, M. A., Yayo, A.M., Safiyanu, M. & Sulaiman, D. (2015). Detoxification Enzymes Activities in DDT and Bendiocarb Resistant and Susceptible Malarial Vector (Anopheles gambiae) Breed in Auyo Residential and Irrigation Sites, Northwest Nigeria. European Scientific Journal, 11(9), 1857-7431

Amer, A. & Mehlorn, H. (2006). Repellency Effect of Forty One Essential Oils against Aedes albopictus (Diptera: Culicidae). Parasitology Research, 99, 478-490.

Anupam G., Nandita C. & Goutam C. (2012). Plant Extracts as Potential Mosquito Larvicides. Indian Journal of Medical Research, 135, 581-598.

Appadural, D. S., Munusamy R. V., Michael, G. P. & Savarimuthu, I. (2014). Larvicidal Activity of Medicinal Plant Extracts against Culex Quinquefasciatus Say & Aedes Aegypti L. Journal of Pure & Applied Zoology, 2(3), 205-210.

Awolola, T. S., Oduola, A. O., Oyewole, I .O., Obansa, J. B., Amajoh, C. N., Kokemoerd, L. L. & Coetzeed, M. (2007). Dynamics of Knockdown Pyrethroid Insecticide Resistance Alleles in a Field Population of Anopheles gambiae s.s. in Southwestern Nigeria. Journal of Vector Borne Diseases, 44, 181-188.

Barbosa, P., Gross, P. Provan, G. J. & Stermiz, F. R. (1990). Allelochemicals in Foliage of Unfavored Tree Hoss of the Gypsy Mooth Lymantria disparL. Seasonal Variation of Saponins in Ilex opacea & identificationof Saponin Aglycones. Journal of Chemistry & Ecology, 16, 1731-1738.

Bradford, M. M. (1976). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72, 248-254.

Brogden, W. G., Mcallister, J. C. & Vulule, J. (1998). Heme Peroxidase Activity Measured in Single Mosquitoes Identifies Individuals Expressing the Elevated Oxidase Mechanism for Insecticide Resistance. Journal of the American Mosquito Control Association, 64, 339-346.

Centers for Disease Control & Prevention. (2004). Multifocal Autochthonous Transmission of Malaria. Florida, 2003, CDC, MMWR, 53: 412-413.

Constant, V. A. E., Benjamin, G. K., Christopher, M. J., David, W. & Hilary, R. (2012). Multiple-Insecticide Resistance in Anopheles Gambiae Mosquitoes, Southern Côte D’ivoire. Emerging Infectious Diseases, 18(9), 1508-1511.

David J. P., Ismail H. M., Chandor-Proust, A. & Paine M. J. I. (2013). Role of Cytochrome P450s in Insecticide Resistance: Impact on the Control of Mosquito-Borne Diseases and Use of Insecticides on Earth. Philosophical Translations of the Royal Society B 368, 20120429. Http://Dx.Doi.Org/10.1098/Rstb.2012.0429

De Morais, S. M., Facundo, V. A., Bertini, L. M., Cavalcanti, E. S. B., Anjos Junior, J. F. D. & Ferreeira, S. A. (2007). Chemical Composition and Larvicidal Activity of Essential Oils from Piper Species. Biochemical Systematics & Ecology, 35 (10), 670-675.

Djouaka, R. F., Bakare, A. A., Coulibaly, O. N., Akogbeto, M. C., Ranson, H., Hemingway, J. & Strode C. (2008). Expression of the Cytochrome P450s, Cyp6p3 and Cyp6m2 are Significantly Elevated in Multiple Pyrethroid Resistant Populations of Anopheles gambiae s.s. From Southern Benin and Nigeria. BMC Genomics, 9, 538.

Doliantis, C. & Sinclair, R. (2002). Optimal Treatment Of Head Lice: Is A No-Hit Policy Justified? Clinical Dermatology, 20, 94-96.

Ellman, G. L. (1959). Tissue Sulphydryl Groups. Archives of Biochemistry and Biophysics, 82, 70-77

Faiz, O. A., Colak, N., Saglam, S. & Belduz, A. O. (2007). Determination and Characterization of Thermostable Esterolytic Activity from a Novel Thermophilic Bacterium Anoxybaccilus Gonensis. Journal of Biochemistry and Molecular Biology, 40 (4), 588-594.

Frederick, M. F. (2014). Pesticide Effects on Non-Target Organisms Document: Pi-85 Pesticide Information Office, Florida Cooperative Extension Service, Institute Of Food and Agricultural Sciences, University of Florida. Retrieved from http://Edis.Ifas.Ufl.Edu

Gillies, M. T. & Coetzee, M. (1987). A Supplement of the Anopheles of Africa South of the Sahara (Afro-tropical Region). South African Institute for Medical Research, 55, 96-110.

Habig, W. H., Pabst, J. M. & Jakoby, W. B. (1974). The First Enzymatic Step in Mercapturic Acid Formation. Journal of Biological Chemistry, 249 (22), 7130-7139.

Harada, K., Suomalainen, M., Uchida, H., Masui H., Ohmura, K. & Kiviranta, J.(2000). Insecticidal Compounds against Mosquito Larvae from Oscillatoria agardhii Strain 27. Environmental Toxicology, 15, 114-119.

Harborne, J. B. 1973. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. London: Chapman & Hall Ltd, pp. 49-188.

Ibrahim, S. S., Manu, Y. A., Tukur, Z., Irving, H. & Wondji, C. S. 2014. High Frequency of kdr L1014F is Associated with Pyrethroid Resistance in Anopheles coluzzii in Sudan Savannah of Northern Nigeria. BMC Infectious Diseases, 14 (441), 1471-2334.

Imam, A. A. & Deeni, Y. Y. (2014). Response of An. gambiae Detoxification Enzymes to Levels of Physico-Chemical Environmental Factors from Northwest Nigeria. Bayero Journal of Pure & Applied Sciences, 7(2), 93-104.

Jagruti, H. S., Kumar, H., Godinho, M. H. S & Ashwani, (2014). Larvicidal Activity of Methanolic Leaf Extracts Of Plant, Chromolaena Odorata L. (Asteraceae) against Vector Mosquitoes. International Journal of Mosquito Research, 1(3), 33-38.

Kelm, M. A., & Nair, M. G. (1998). Mosquitocidal Compounds and Triglyceride, 1, 3-Dilinoleneoyl-2-Palmitin from Ocimum sanctum. Journal of Agriculture Food & Chemistry, 46,3092-3094.

Lumjuan, N., Rajatileka, S., Changsom, D. & Ranson H. (2011). The Role of the Aedes aegypti Epsilon Glutathione Transferases in Conferring, Resistance to DDT and Pyrethroid Insecticides. Insect Biochemistry & Molecular Biology, 41, 203–209.

Matambo, T. S., Paine, M.J.I., Coetzee, M. & Koekemoer, L.L. (2010). Sequence Characterization of Cytochrome P450 Cyp6p9 in Pyrethroid Resistant and Susceptible Anopheles Funestus (Diptera: Culicidae). Genetics and Molecular. Research, 9, 554-564.

Oduola, A. O., Idowu, E. T., Oyebola, M. K., Adegun, A. O., Olojede, J. B., Otunbanjo, A. O. & Awolola, T. S. (2012). Evidence of Carbamate Resistance in Urban Populations of Anopheles gambiae s.s. Mosquitoes Resistant to DDT & Deltamethrin Insecticides in Lagos, South West, Nigeria. Parasites & Vectors 5, 116.

Omolo, M. O., Okinyo, D., Ndiege, I, O., Lwande, W. & Hassanali, A. (2014). Repellency of Essential Oils of some Kenyan Plants against anopheles gambiae. Phytochemistry., 65,2797-2802.

Owolabi, M. S., Camberos, E. P., Ogundajo, A.L., Ogunwande, A.I., Flamini, G., Yusuff, O. K…& Fern&ez, J.M.F. (2014). Insecticidal Activity and Chemical Composition of the Morina Lucida Essential Oil against Pulse Beetle Callosobruchus Maculatus. Scientific World Journal, Http://Dx.Doi.Org/1 0.1155/2014/784613.

Perumalsamy, H., Jang, M. J., Kim, J., Kadarkarai, M. & Ahn, Y. (2015). Larvicidal Activity & Possible mode of Action of Four Flavonoids & Two Fatty Acid Identified in Milletia pinnata Seed toward Three Mosquito Species. Parasites & Vectors, 8,237.

Ranson, H., Rossiter, L., Ortelli, F., Jensen, B., Wang, X., Roth, C.W… & Hemingway, J. 2001. Identification of a Novel Class of Insect Glutathione S-Transferases Involved in Resistance to DDT in the Malaria Vector Anopheles gambiae. Biochemical Journal, 359, 259-304.

Reegan, A. D., Gh&i, M. R., Paulraj, M. G. & Ignacimuthu, S. (2015). Ovicidal & Oviposition Deterrent Activities of Medicinal Plant Extracts Against Aedes aegypti L. & Culex quiquefasciatus Say Mosquitoes (Diptera: Culicidae). Osong Public Health & Research Persectives, 6(1), 64-69.

Sofowara, A. 1993. Medicinal Plants & Traditional Medicine in Africa. Ibadan, Nigeria: Spectrum Books Ltd, p. 289

Somwang, P., Yanola, J., Suwan, W., Walton, C., Lumjuan, N., Prapanthadara, L. A. & Somboon P. (2011). Enzymes-Based Resistant Mechanism in Pyrethroid Resistant & Susceptible Aedes Aegypti Strains from Northern Thail&. Parasitology Research, 109, 531–537.

Timbrell, J. A. (2009). Principles of Biochemical Toxicology. 4th Edition, London: Informa Healthcare, pp 100-110.

Trease G.E. & Evans W.C. (1989). Pharmacognosy.11th Edition.BrailliarTiridel Can. Macmillian

publishers.pp184-186.

Udebuani, A. C., Abara, P. C., Obasi, K. O. & Okuh, S. O. (2015). Studies on the Insecticidal Properties of Chromolaena odorata against Adult Stage of Periplaneta americana. Journal of Entomology & Zoology Studies, 3(1), 318-321.

Umar, A., Kabir, B.G.J., Amajoh, C.N., Inyama, P.U., Ordu, D.A., Barde, A.A.,... & Jabbdo, M.A. (2014). Susceptibility of Female Anopheles Mosquitoes to Ten Inseccticides for Outdoor Residual Spraying (IRS) Baseline Data Colletion in Northeastern Nigeria. Academic Journals. 6 (7), 98-103.

Vulule, J.M., Beach, R.F., Atieli F.K., McAllister J.C… and Hawley, W.A. (1999). Elevated Oxidase and Esterase Levels Associated with Permethrin Tolerance in Anopheles Gambiae from Kenyan Villages Using Permethrin-Impregnated Nets. Medical and Veterinary Entomology, 13, 239–244

Wang, Z., Kim, J. R., Wang, M., Shu, S & Ahn, Y. J. (2012). Larvicidal Activity of Cnidium monnieri fruit coumarins & structurally related compounds against insecticide-susceptible & insecticide-resistant Culex pipiens pallens & Aedes aegypti. Pest Management Science, 68, 1041-1047.

Wondji, C. S., Irving, H., Morgan, J., Lobo, N.F., Collins, F.H., Hunt, R.H.,…& Ranson, H. (2009). Two Duplicated P450 Genes are Associated with Pyrethroid Resistance in Anopheles Funestus, A Major Malaria Vector. Genome Research 19, 452-459.

World Health Organization, (1998). Techniques to Detect Insecticide Resistance Mechanisms (Field & Laboratory Manual). CDS/CPC/Mal. 98.6 Geneva, Switzerland.

World Health Organization (2016). Factsheet on the World Malaria Report 2015. WHO Global Malaria Programme. World Health Organisation, Geneva, Switzerland.

Yang, M. L., Zhang, J. Z., Zhu, K. Y., Xuan, T., Liu, X. J., Guo, Y. P. &. Ma, E. B. (2009). Mechanisms of Organophosphate Resistance in a field Population of Oriental Migratory Locust, Locusta Migratoria Manilensis (Meyen). Archives of Insect Biochemistry & Physiology, 71, 3-15.

Published
2018-06-28
How to Cite
Imam, A. A., Amos, A. S., Abdullahi, H., & Ibrahim, A. (2018). Comparative Larvicidal Properties and Detoxification Machinery of Bioactive Fractions of Leaf Extracts of Hyptis Suaveolens and Chromolaena Odorata on Anopheles gambiae s.l from North West Nigeria. Malaysian Journal of Applied Sciences, 3(1), 9-23. Retrieved from https://journal.unisza.edu.my/myjas/index.php/myjas/article/view/80
Section
Research Articles